File size: 10,389 Bytes
512a50c
8f77051
512a50c
8f77051
 
512a50c
8f77051
 
 
512a50c
 
 
 
8f77051
512a50c
 
 
 
8f77051
 
 
fb30711
8f77051
 
 
 
512a50c
 
8f77051
512a50c
 
8f77051
 
 
 
512a50c
fb30711
 
 
512a50c
8f77051
 
512a50c
fb30711
 
 
8f77051
fb30711
 
 
 
 
 
 
8f77051
 
 
 
 
512a50c
8f77051
 
 
512a50c
 
8f77051
512a50c
8f77051
 
 
 
 
512a50c
8f77051
 
 
512a50c
 
8f77051
 
 
512a50c
8f77051
 
 
 
 
 
512a50c
8f77051
 
 
 
 
 
512a50c
8f77051
 
512a50c
8f77051
512a50c
 
8f77051
 
 
 
512a50c
fb30711
 
 
512a50c
8f77051
 
 
 
512a50c
 
 
 
 
 
 
 
 
 
fb30711
 
 
8f77051
512a50c
 
 
 
 
 
 
 
 
 
 
 
 
8f77051
 
 
 
 
 
 
 
 
 
512a50c
8f77051
 
512a50c
 
8f77051
512a50c
 
 
 
 
 
 
fb30711
 
 
8f77051
512a50c
8f77051
 
 
 
 
512a50c
8f77051
512a50c
8f77051
512a50c
 
8f77051
512a50c
 
 
 
8f77051
512a50c
 
 
 
8f77051
 
 
 
512a50c
 
cd98eef
512a50c
 
8f77051
 
512a50c
8f77051
512a50c
 
 
8f77051
512a50c
 
 
8f77051
512a50c
 
 
 
8f77051
512a50c
 
 
 
 
 
8f77051
512a50c
 
 
8f77051
512a50c
 
 
8f77051
 
512a50c
 
 
 
8f77051
512a50c
 
8f77051
 
512a50c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f77051
512a50c
 
 
 
 
 
 
 
 
 
 
 
 
8f77051
 
 
 
 
512a50c
0de801f
512a50c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import os
import sys
import shutil
import logging
import traceback
from typing import *

import gradio as gr
import spaces
import torch
import numpy as np
import imageio
from easydict import EasyDict as edict

from trellis.pipelines import TrellisTextTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils

# Configuraci贸n de entorno
os.environ["TOKENIZERS_PARALLELISM"] = "true"
os.environ["SPCONV_ALGO"] = "native"

logging.basicConfig(
    level=logging.INFO,
    format="%(asctime)s - HF_SPACE - %(levelname)s - %(message)s"
)

MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), "tmp")
os.makedirs(TMP_DIR, exist_ok=True)


# -----------------------------
# Funciones de manejo de sesi贸n
# -----------------------------
def start_session(req: gr.Request):
    session_hash = str(req.session_hash)
    user_dir = os.path.join(TMP_DIR, session_hash)
    logging.info(f"START SESSION: Creando directorio para la sesi贸n {session_hash} en {user_dir}")
    os.makedirs(user_dir, exist_ok=True)


def end_session(req: gr.Request):
    session_hash = str(req.session_hash)
    user_dir = os.path.join(TMP_DIR, session_hash)
    logging.info(f"END SESSION: Intentando eliminar el directorio de la sesi贸n {session_hash} en {user_dir}")

    if os.path.exists(user_dir):
        try:
            shutil.rmtree(user_dir)
            logging.info(f"Directorio de la sesi贸n {session_hash} eliminado correctamente.")
        except Exception as e:
            logging.error(f"Error al eliminar el directorio de la sesi贸n {session_hash}: {e}")
    else:
        logging.warning(
            f"El directorio de la sesi贸n {session_hash} no fue encontrado. "
            "Es posible que ya haya sido limpiado."
        )


# -----------------------------
# Manejo de estado
# -----------------------------
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
    return {
        "gaussian": {
            **gs.init_params,
            "_xyz": gs._xyz.cpu().numpy(),
            "_features_dc": gs._features_dc.cpu().numpy(),
            "_scaling": gs._scaling.cpu().numpy(),
            "_rotation": gs._rotation.cpu().numpy(),
            "_opacity": gs._opacity.cpu().numpy(),
        },
        "mesh": {
            "vertices": mesh.vertices.cpu().numpy(),
            "faces": mesh.faces.cpu().numpy(),
        },
    }


def unpack_state(state: dict) -> Tuple[Gaussian, edict]:
    gs = Gaussian(
        aabb=state["gaussian"]["aabb"],
        sh_degree=state["gaussian"]["sh_degree"],
        mininum_kernel_size=state["gaussian"]["mininum_kernel_size"],
        scaling_bias=state["gaussian"]["scaling_bias"],
        opacity_bias=state["gaussian"]["opacity_bias"],
        scaling_activation=state["gaussian"]["scaling_activation"],
    )
    gs._xyz = torch.tensor(state["gaussian"]["_xyz"], device="cuda")
    gs._features_dc = torch.tensor(state["gaussian"]["_features_dc"], device="cuda")
    gs._scaling = torch.tensor(state["gaussian"]["_scaling"], device="cuda")
    gs._rotation = torch.tensor(state["gaussian"]["_rotation"], device="cuda")
    gs._opacity = torch.tensor(state["gaussian"]["_opacity"], device="cuda")

    mesh = edict(
        vertices=torch.tensor(state["mesh"]["vertices"], device="cuda"),
        faces=torch.tensor(state["mesh"]["faces"], device="cuda"),
    )

    return gs, mesh


# -----------------------------
# Funciones utilitarias
# -----------------------------
def get_seed(randomize_seed: bool, seed: int) -> int:
    new_seed = np.random.randint(0, MAX_SEED) if randomize_seed else seed
    logging.info(f"Usando seed: {new_seed}")
    return new_seed


# -----------------------------
# Procesos principales
# -----------------------------
@spaces.GPU
def text_to_3d(
    prompt: str,
    seed: int,
    ss_guidance_strength: float,
    ss_sampling_steps: int,
    slat_guidance_strength: float,
    slat_sampling_steps: int,
    req: gr.Request,
) -> Tuple[dict, str]:
    session_hash = str(req.session_hash)
    logging.info(f"[{session_hash}] Iniciando text_to_3d con prompt: '{prompt[:50]}...'")
    user_dir = os.path.join(TMP_DIR, session_hash)

    outputs = pipeline.run(
        prompt,
        seed=seed,
        formats=["gaussian", "mesh"],
        sparse_structure_sampler_params={
            "steps": ss_sampling_steps,
            "cfg_strength": ss_guidance_strength,
        },
        slat_sampler_params={
            "steps": slat_sampling_steps,
            "cfg_strength": slat_guidance_strength,
        },
    )

    logging.info(f"[{session_hash}] Generaci贸n completada. Renderizando video...")
    video = render_utils.render_video(outputs["gaussian"][0], num_frames=120)["color"]
    video_geo = render_utils.render_video(outputs["mesh"][0], num_frames=120)["normal"]

    video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
    video_path = os.path.join(user_dir, "sample.mp4")
    imageio.mimsave(video_path, video, fps=15)

    state = pack_state(outputs["gaussian"][0], outputs["mesh"][0])
    torch.cuda.empty_cache()

    logging.info(f"[{session_hash}] Video y estado listos. Devolviendo: {video_path}")
    return state, video_path


@spaces.GPU(duration=90)
def extract_glb(
    state: dict,
    mesh_simplify: float,
    texture_size: int,
    req: gr.Request,
) -> Tuple[str, str]:
    session_hash = str(req.session_hash)
    logging.info(f"[{session_hash}] Iniciando extract_glb...")
    user_dir = os.path.join(TMP_DIR, session_hash)

    gs, mesh = unpack_state(state)
    glb = postprocessing_utils.to_glb(
        gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False
    )

    glb_path = os.path.join(user_dir, "sample.glb")
    glb.export(glb_path)

    torch.cuda.empty_cache()
    logging.info(f"[{session_hash}] GLB listo: {glb_path}")
    return glb_path, glb_path


@spaces.GPU
def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    gs, _ = unpack_state(state)
    gaussian_path = os.path.join(user_dir, "sample.ply")
    gs.save_ply(gaussian_path)
    torch.cuda.empty_cache()
    return gaussian_path, gaussian_path


# -----------------------------
# Interfaz Gradio
# -----------------------------
with gr.Blocks(delete_cache=(600, 600)) as demo:
    gr.Markdown("""
    # UTPL - Conversi贸n de Texto a objetos 3D usando IA  
    ### Tesis: *"Objetos tridimensionales creados por IA: Innovaci贸n en entornos virtuales"*  
    **Autor:** Carlos Vargas  
    **Base t茅cnica:** Adaptaci贸n de [TRELLIS](https://trellis3d.github.io/)  
    **Prop贸sito educativo:** Demostraciones acad茅micas e investigaci贸n en modelado 3D autom谩tico  
    """)

    with gr.Row():
        with gr.Column():
            text_prompt = gr.Textbox(label="Text Prompt", lines=5)

            with gr.Accordion(label="Generation Settings", open=False):
                seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
                randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)

                gr.Markdown("Stage 1: Sparse Structure Generation")
                with gr.Row():
                    ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
                    ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=25, step=1)

                gr.Markdown("Stage 2: Structured Latent Generation")
                with gr.Row():
                    slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
                    slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=25, step=1)

            generate_btn = gr.Button("Generate")

            with gr.Accordion(label="GLB Extraction Settings", open=False):
                mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
                texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)

            with gr.Row():
                extract_glb_btn = gr.Button("Extract GLB", interactive=False)
                extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)

            gr.Markdown("*NOTE: Gaussian file can be very large (~50MB), it will take a while to display and download.*")

        with gr.Column():
            video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
            model_output = gr.Model3D(label="Extracted GLB/Gaussian", height=300)

            with gr.Row():
                download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
                download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False)

    output_buf = gr.State()

    # Handlers
    demo.load(start_session)
    demo.unload(end_session)

    generate_btn.click(
        get_seed,
        inputs=[randomize_seed, seed],
        outputs=[seed],
    ).then(
        text_to_3d,
        inputs=[text_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
        outputs=[output_buf, video_output],
    ).then(
        lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]),
        outputs=[extract_glb_btn, extract_gs_btn],
    )

    video_output.clear(
        lambda: tuple([gr.Button(interactive=False), gr.Button(interactive=False)]),
        outputs=[extract_glb_btn, extract_gs_btn],
    )

    extract_glb_btn.click(
        extract_glb,
        inputs=[output_buf, mesh_simplify, texture_size],
        outputs=[model_output, download_glb],
    ).then(
        lambda: gr.Button(interactive=True),
        outputs=[download_glb],
    )

    extract_gs_btn.click(
        extract_gaussian,
        inputs=[output_buf],
        outputs=[model_output, download_gs],
    ).then(
        lambda: gr.Button(interactive=True),
        outputs=[download_gs],
    )

    model_output.clear(
        lambda: gr.Button(interactive=False),
        outputs=[download_glb],
    )


# -----------------------------
# Lanzamiento
# -----------------------------
if __name__ == "__main__":
    pipeline = TrellisTextTo3DPipeline.from_pretrained("cavargas10/TRELLIS-text-xlarge")
    pipeline.cuda()
    demo.launch()