Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,389 Bytes
512a50c 8f77051 512a50c 8f77051 512a50c 8f77051 512a50c 8f77051 512a50c 8f77051 fb30711 8f77051 512a50c 8f77051 512a50c 8f77051 512a50c fb30711 512a50c 8f77051 512a50c fb30711 8f77051 fb30711 8f77051 512a50c 8f77051 512a50c 8f77051 512a50c 8f77051 512a50c 8f77051 512a50c 8f77051 512a50c 8f77051 512a50c 8f77051 512a50c 8f77051 512a50c 8f77051 512a50c 8f77051 512a50c fb30711 512a50c 8f77051 512a50c fb30711 8f77051 512a50c 8f77051 512a50c 8f77051 512a50c 8f77051 512a50c fb30711 8f77051 512a50c 8f77051 512a50c 8f77051 512a50c 8f77051 512a50c 8f77051 512a50c 8f77051 512a50c 8f77051 512a50c cd98eef 512a50c 8f77051 512a50c 8f77051 512a50c 8f77051 512a50c 8f77051 512a50c 8f77051 512a50c 8f77051 512a50c 8f77051 512a50c 8f77051 512a50c 8f77051 512a50c 8f77051 512a50c 8f77051 512a50c 8f77051 512a50c 0de801f 512a50c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
import os
import sys
import shutil
import logging
import traceback
from typing import *
import gradio as gr
import spaces
import torch
import numpy as np
import imageio
from easydict import EasyDict as edict
from trellis.pipelines import TrellisTextTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils
# Configuraci贸n de entorno
os.environ["TOKENIZERS_PARALLELISM"] = "true"
os.environ["SPCONV_ALGO"] = "native"
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - HF_SPACE - %(levelname)s - %(message)s"
)
MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), "tmp")
os.makedirs(TMP_DIR, exist_ok=True)
# -----------------------------
# Funciones de manejo de sesi贸n
# -----------------------------
def start_session(req: gr.Request):
session_hash = str(req.session_hash)
user_dir = os.path.join(TMP_DIR, session_hash)
logging.info(f"START SESSION: Creando directorio para la sesi贸n {session_hash} en {user_dir}")
os.makedirs(user_dir, exist_ok=True)
def end_session(req: gr.Request):
session_hash = str(req.session_hash)
user_dir = os.path.join(TMP_DIR, session_hash)
logging.info(f"END SESSION: Intentando eliminar el directorio de la sesi贸n {session_hash} en {user_dir}")
if os.path.exists(user_dir):
try:
shutil.rmtree(user_dir)
logging.info(f"Directorio de la sesi贸n {session_hash} eliminado correctamente.")
except Exception as e:
logging.error(f"Error al eliminar el directorio de la sesi贸n {session_hash}: {e}")
else:
logging.warning(
f"El directorio de la sesi贸n {session_hash} no fue encontrado. "
"Es posible que ya haya sido limpiado."
)
# -----------------------------
# Manejo de estado
# -----------------------------
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
return {
"gaussian": {
**gs.init_params,
"_xyz": gs._xyz.cpu().numpy(),
"_features_dc": gs._features_dc.cpu().numpy(),
"_scaling": gs._scaling.cpu().numpy(),
"_rotation": gs._rotation.cpu().numpy(),
"_opacity": gs._opacity.cpu().numpy(),
},
"mesh": {
"vertices": mesh.vertices.cpu().numpy(),
"faces": mesh.faces.cpu().numpy(),
},
}
def unpack_state(state: dict) -> Tuple[Gaussian, edict]:
gs = Gaussian(
aabb=state["gaussian"]["aabb"],
sh_degree=state["gaussian"]["sh_degree"],
mininum_kernel_size=state["gaussian"]["mininum_kernel_size"],
scaling_bias=state["gaussian"]["scaling_bias"],
opacity_bias=state["gaussian"]["opacity_bias"],
scaling_activation=state["gaussian"]["scaling_activation"],
)
gs._xyz = torch.tensor(state["gaussian"]["_xyz"], device="cuda")
gs._features_dc = torch.tensor(state["gaussian"]["_features_dc"], device="cuda")
gs._scaling = torch.tensor(state["gaussian"]["_scaling"], device="cuda")
gs._rotation = torch.tensor(state["gaussian"]["_rotation"], device="cuda")
gs._opacity = torch.tensor(state["gaussian"]["_opacity"], device="cuda")
mesh = edict(
vertices=torch.tensor(state["mesh"]["vertices"], device="cuda"),
faces=torch.tensor(state["mesh"]["faces"], device="cuda"),
)
return gs, mesh
# -----------------------------
# Funciones utilitarias
# -----------------------------
def get_seed(randomize_seed: bool, seed: int) -> int:
new_seed = np.random.randint(0, MAX_SEED) if randomize_seed else seed
logging.info(f"Usando seed: {new_seed}")
return new_seed
# -----------------------------
# Procesos principales
# -----------------------------
@spaces.GPU
def text_to_3d(
prompt: str,
seed: int,
ss_guidance_strength: float,
ss_sampling_steps: int,
slat_guidance_strength: float,
slat_sampling_steps: int,
req: gr.Request,
) -> Tuple[dict, str]:
session_hash = str(req.session_hash)
logging.info(f"[{session_hash}] Iniciando text_to_3d con prompt: '{prompt[:50]}...'")
user_dir = os.path.join(TMP_DIR, session_hash)
outputs = pipeline.run(
prompt,
seed=seed,
formats=["gaussian", "mesh"],
sparse_structure_sampler_params={
"steps": ss_sampling_steps,
"cfg_strength": ss_guidance_strength,
},
slat_sampler_params={
"steps": slat_sampling_steps,
"cfg_strength": slat_guidance_strength,
},
)
logging.info(f"[{session_hash}] Generaci贸n completada. Renderizando video...")
video = render_utils.render_video(outputs["gaussian"][0], num_frames=120)["color"]
video_geo = render_utils.render_video(outputs["mesh"][0], num_frames=120)["normal"]
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
video_path = os.path.join(user_dir, "sample.mp4")
imageio.mimsave(video_path, video, fps=15)
state = pack_state(outputs["gaussian"][0], outputs["mesh"][0])
torch.cuda.empty_cache()
logging.info(f"[{session_hash}] Video y estado listos. Devolviendo: {video_path}")
return state, video_path
@spaces.GPU(duration=90)
def extract_glb(
state: dict,
mesh_simplify: float,
texture_size: int,
req: gr.Request,
) -> Tuple[str, str]:
session_hash = str(req.session_hash)
logging.info(f"[{session_hash}] Iniciando extract_glb...")
user_dir = os.path.join(TMP_DIR, session_hash)
gs, mesh = unpack_state(state)
glb = postprocessing_utils.to_glb(
gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False
)
glb_path = os.path.join(user_dir, "sample.glb")
glb.export(glb_path)
torch.cuda.empty_cache()
logging.info(f"[{session_hash}] GLB listo: {glb_path}")
return glb_path, glb_path
@spaces.GPU
def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
gs, _ = unpack_state(state)
gaussian_path = os.path.join(user_dir, "sample.ply")
gs.save_ply(gaussian_path)
torch.cuda.empty_cache()
return gaussian_path, gaussian_path
# -----------------------------
# Interfaz Gradio
# -----------------------------
with gr.Blocks(delete_cache=(600, 600)) as demo:
gr.Markdown("""
# UTPL - Conversi贸n de Texto a objetos 3D usando IA
### Tesis: *"Objetos tridimensionales creados por IA: Innovaci贸n en entornos virtuales"*
**Autor:** Carlos Vargas
**Base t茅cnica:** Adaptaci贸n de [TRELLIS](https://trellis3d.github.io/)
**Prop贸sito educativo:** Demostraciones acad茅micas e investigaci贸n en modelado 3D autom谩tico
""")
with gr.Row():
with gr.Column():
text_prompt = gr.Textbox(label="Text Prompt", lines=5)
with gr.Accordion(label="Generation Settings", open=False):
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
gr.Markdown("Stage 1: Sparse Structure Generation")
with gr.Row():
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=25, step=1)
gr.Markdown("Stage 2: Structured Latent Generation")
with gr.Row():
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=25, step=1)
generate_btn = gr.Button("Generate")
with gr.Accordion(label="GLB Extraction Settings", open=False):
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
with gr.Row():
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
gr.Markdown("*NOTE: Gaussian file can be very large (~50MB), it will take a while to display and download.*")
with gr.Column():
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
model_output = gr.Model3D(label="Extracted GLB/Gaussian", height=300)
with gr.Row():
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False)
output_buf = gr.State()
# Handlers
demo.load(start_session)
demo.unload(end_session)
generate_btn.click(
get_seed,
inputs=[randomize_seed, seed],
outputs=[seed],
).then(
text_to_3d,
inputs=[text_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
outputs=[output_buf, video_output],
).then(
lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]),
outputs=[extract_glb_btn, extract_gs_btn],
)
video_output.clear(
lambda: tuple([gr.Button(interactive=False), gr.Button(interactive=False)]),
outputs=[extract_glb_btn, extract_gs_btn],
)
extract_glb_btn.click(
extract_glb,
inputs=[output_buf, mesh_simplify, texture_size],
outputs=[model_output, download_glb],
).then(
lambda: gr.Button(interactive=True),
outputs=[download_glb],
)
extract_gs_btn.click(
extract_gaussian,
inputs=[output_buf],
outputs=[model_output, download_gs],
).then(
lambda: gr.Button(interactive=True),
outputs=[download_gs],
)
model_output.clear(
lambda: gr.Button(interactive=False),
outputs=[download_glb],
)
# -----------------------------
# Lanzamiento
# -----------------------------
if __name__ == "__main__":
pipeline = TrellisTextTo3DPipeline.from_pretrained("cavargas10/TRELLIS-text-xlarge")
pipeline.cuda()
demo.launch() |