Spaces:
Running
on
Zero
Running
on
Zero
Delete trellis/renderers
Browse files- trellis/renderers/__init__.py +0 -31
- trellis/renderers/gaussian_render.py +0 -231
- trellis/renderers/mesh_renderer.py +0 -140
- trellis/renderers/octree_renderer.py +0 -300
- trellis/renderers/sh_utils.py +0 -118
trellis/renderers/__init__.py
DELETED
@@ -1,31 +0,0 @@
|
|
1 |
-
import importlib
|
2 |
-
|
3 |
-
__attributes = {
|
4 |
-
'OctreeRenderer': 'octree_renderer',
|
5 |
-
'GaussianRenderer': 'gaussian_render',
|
6 |
-
'MeshRenderer': 'mesh_renderer',
|
7 |
-
}
|
8 |
-
|
9 |
-
__submodules = []
|
10 |
-
|
11 |
-
__all__ = list(__attributes.keys()) + __submodules
|
12 |
-
|
13 |
-
def __getattr__(name):
|
14 |
-
if name not in globals():
|
15 |
-
if name in __attributes:
|
16 |
-
module_name = __attributes[name]
|
17 |
-
module = importlib.import_module(f".{module_name}", __name__)
|
18 |
-
globals()[name] = getattr(module, name)
|
19 |
-
elif name in __submodules:
|
20 |
-
module = importlib.import_module(f".{name}", __name__)
|
21 |
-
globals()[name] = module
|
22 |
-
else:
|
23 |
-
raise AttributeError(f"module {__name__} has no attribute {name}")
|
24 |
-
return globals()[name]
|
25 |
-
|
26 |
-
|
27 |
-
# For Pylance
|
28 |
-
if __name__ == '__main__':
|
29 |
-
from .octree_renderer import OctreeRenderer
|
30 |
-
from .gaussian_render import GaussianRenderer
|
31 |
-
from .mesh_renderer import MeshRenderer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
trellis/renderers/gaussian_render.py
DELETED
@@ -1,231 +0,0 @@
|
|
1 |
-
#
|
2 |
-
# Copyright (C) 2023, Inria
|
3 |
-
# GRAPHDECO research group, https://team.inria.fr/graphdeco
|
4 |
-
# All rights reserved.
|
5 |
-
#
|
6 |
-
# This software is free for non-commercial, research and evaluation use
|
7 |
-
# under the terms of the LICENSE.md file.
|
8 |
-
#
|
9 |
-
# For inquiries contact [email protected]
|
10 |
-
#
|
11 |
-
|
12 |
-
import torch
|
13 |
-
import math
|
14 |
-
from easydict import EasyDict as edict
|
15 |
-
import numpy as np
|
16 |
-
from ..representations.gaussian import Gaussian
|
17 |
-
from .sh_utils import eval_sh
|
18 |
-
import torch.nn.functional as F
|
19 |
-
from easydict import EasyDict as edict
|
20 |
-
|
21 |
-
|
22 |
-
def intrinsics_to_projection(
|
23 |
-
intrinsics: torch.Tensor,
|
24 |
-
near: float,
|
25 |
-
far: float,
|
26 |
-
) -> torch.Tensor:
|
27 |
-
"""
|
28 |
-
OpenCV intrinsics to OpenGL perspective matrix
|
29 |
-
|
30 |
-
Args:
|
31 |
-
intrinsics (torch.Tensor): [3, 3] OpenCV intrinsics matrix
|
32 |
-
near (float): near plane to clip
|
33 |
-
far (float): far plane to clip
|
34 |
-
Returns:
|
35 |
-
(torch.Tensor): [4, 4] OpenGL perspective matrix
|
36 |
-
"""
|
37 |
-
fx, fy = intrinsics[0, 0], intrinsics[1, 1]
|
38 |
-
cx, cy = intrinsics[0, 2], intrinsics[1, 2]
|
39 |
-
ret = torch.zeros((4, 4), dtype=intrinsics.dtype, device=intrinsics.device)
|
40 |
-
ret[0, 0] = 2 * fx
|
41 |
-
ret[1, 1] = 2 * fy
|
42 |
-
ret[0, 2] = 2 * cx - 1
|
43 |
-
ret[1, 2] = - 2 * cy + 1
|
44 |
-
ret[2, 2] = far / (far - near)
|
45 |
-
ret[2, 3] = near * far / (near - far)
|
46 |
-
ret[3, 2] = 1.
|
47 |
-
return ret
|
48 |
-
|
49 |
-
|
50 |
-
def render(viewpoint_camera, pc : Gaussian, pipe, bg_color : torch.Tensor, scaling_modifier = 1.0, override_color = None):
|
51 |
-
"""
|
52 |
-
Render the scene.
|
53 |
-
|
54 |
-
Background tensor (bg_color) must be on GPU!
|
55 |
-
"""
|
56 |
-
# lazy import
|
57 |
-
if 'GaussianRasterizer' not in globals():
|
58 |
-
from diff_gaussian_rasterization import GaussianRasterizer, GaussianRasterizationSettings
|
59 |
-
|
60 |
-
# Create zero tensor. We will use it to make pytorch return gradients of the 2D (screen-space) means
|
61 |
-
screenspace_points = torch.zeros_like(pc.get_xyz, dtype=pc.get_xyz.dtype, requires_grad=True, device="cuda") + 0
|
62 |
-
try:
|
63 |
-
screenspace_points.retain_grad()
|
64 |
-
except:
|
65 |
-
pass
|
66 |
-
# Set up rasterization configuration
|
67 |
-
tanfovx = math.tan(viewpoint_camera.FoVx * 0.5)
|
68 |
-
tanfovy = math.tan(viewpoint_camera.FoVy * 0.5)
|
69 |
-
|
70 |
-
kernel_size = pipe.kernel_size
|
71 |
-
subpixel_offset = torch.zeros((int(viewpoint_camera.image_height), int(viewpoint_camera.image_width), 2), dtype=torch.float32, device="cuda")
|
72 |
-
|
73 |
-
raster_settings = GaussianRasterizationSettings(
|
74 |
-
image_height=int(viewpoint_camera.image_height),
|
75 |
-
image_width=int(viewpoint_camera.image_width),
|
76 |
-
tanfovx=tanfovx,
|
77 |
-
tanfovy=tanfovy,
|
78 |
-
kernel_size=kernel_size,
|
79 |
-
subpixel_offset=subpixel_offset,
|
80 |
-
bg=bg_color,
|
81 |
-
scale_modifier=scaling_modifier,
|
82 |
-
viewmatrix=viewpoint_camera.world_view_transform,
|
83 |
-
projmatrix=viewpoint_camera.full_proj_transform,
|
84 |
-
sh_degree=pc.active_sh_degree,
|
85 |
-
campos=viewpoint_camera.camera_center,
|
86 |
-
prefiltered=False,
|
87 |
-
debug=pipe.debug
|
88 |
-
)
|
89 |
-
|
90 |
-
rasterizer = GaussianRasterizer(raster_settings=raster_settings)
|
91 |
-
|
92 |
-
means3D = pc.get_xyz
|
93 |
-
means2D = screenspace_points
|
94 |
-
opacity = pc.get_opacity
|
95 |
-
|
96 |
-
# If precomputed 3d covariance is provided, use it. If not, then it will be computed from
|
97 |
-
# scaling / rotation by the rasterizer.
|
98 |
-
scales = None
|
99 |
-
rotations = None
|
100 |
-
cov3D_precomp = None
|
101 |
-
if pipe.compute_cov3D_python:
|
102 |
-
cov3D_precomp = pc.get_covariance(scaling_modifier)
|
103 |
-
else:
|
104 |
-
scales = pc.get_scaling
|
105 |
-
rotations = pc.get_rotation
|
106 |
-
|
107 |
-
# If precomputed colors are provided, use them. Otherwise, if it is desired to precompute colors
|
108 |
-
# from SHs in Python, do it. If not, then SH -> RGB conversion will be done by rasterizer.
|
109 |
-
shs = None
|
110 |
-
colors_precomp = None
|
111 |
-
if override_color is None:
|
112 |
-
if pipe.convert_SHs_python:
|
113 |
-
shs_view = pc.get_features.transpose(1, 2).view(-1, 3, (pc.max_sh_degree+1)**2)
|
114 |
-
dir_pp = (pc.get_xyz - viewpoint_camera.camera_center.repeat(pc.get_features.shape[0], 1))
|
115 |
-
dir_pp_normalized = dir_pp/dir_pp.norm(dim=1, keepdim=True)
|
116 |
-
sh2rgb = eval_sh(pc.active_sh_degree, shs_view, dir_pp_normalized)
|
117 |
-
colors_precomp = torch.clamp_min(sh2rgb + 0.5, 0.0)
|
118 |
-
else:
|
119 |
-
shs = pc.get_features
|
120 |
-
else:
|
121 |
-
colors_precomp = override_color
|
122 |
-
|
123 |
-
# Rasterize visible Gaussians to image, obtain their radii (on screen).
|
124 |
-
rendered_image, radii = rasterizer(
|
125 |
-
means3D = means3D,
|
126 |
-
means2D = means2D,
|
127 |
-
shs = shs,
|
128 |
-
colors_precomp = colors_precomp,
|
129 |
-
opacities = opacity,
|
130 |
-
scales = scales,
|
131 |
-
rotations = rotations,
|
132 |
-
cov3D_precomp = cov3D_precomp
|
133 |
-
)
|
134 |
-
|
135 |
-
# Those Gaussians that were frustum culled or had a radius of 0 were not visible.
|
136 |
-
# They will be excluded from value updates used in the splitting criteria.
|
137 |
-
return edict({"render": rendered_image,
|
138 |
-
"viewspace_points": screenspace_points,
|
139 |
-
"visibility_filter" : radii > 0,
|
140 |
-
"radii": radii})
|
141 |
-
|
142 |
-
|
143 |
-
class GaussianRenderer:
|
144 |
-
"""
|
145 |
-
Renderer for the Voxel representation.
|
146 |
-
|
147 |
-
Args:
|
148 |
-
rendering_options (dict): Rendering options.
|
149 |
-
"""
|
150 |
-
|
151 |
-
def __init__(self, rendering_options={}) -> None:
|
152 |
-
self.pipe = edict({
|
153 |
-
"kernel_size": 0.1,
|
154 |
-
"convert_SHs_python": False,
|
155 |
-
"compute_cov3D_python": False,
|
156 |
-
"scale_modifier": 1.0,
|
157 |
-
"debug": False
|
158 |
-
})
|
159 |
-
self.rendering_options = edict({
|
160 |
-
"resolution": None,
|
161 |
-
"near": None,
|
162 |
-
"far": None,
|
163 |
-
"ssaa": 1,
|
164 |
-
"bg_color": 'random',
|
165 |
-
})
|
166 |
-
self.rendering_options.update(rendering_options)
|
167 |
-
self.bg_color = None
|
168 |
-
|
169 |
-
def render(
|
170 |
-
self,
|
171 |
-
gausssian: Gaussian,
|
172 |
-
extrinsics: torch.Tensor,
|
173 |
-
intrinsics: torch.Tensor,
|
174 |
-
colors_overwrite: torch.Tensor = None
|
175 |
-
) -> edict:
|
176 |
-
"""
|
177 |
-
Render the gausssian.
|
178 |
-
|
179 |
-
Args:
|
180 |
-
gaussian : gaussianmodule
|
181 |
-
extrinsics (torch.Tensor): (4, 4) camera extrinsics
|
182 |
-
intrinsics (torch.Tensor): (3, 3) camera intrinsics
|
183 |
-
colors_overwrite (torch.Tensor): (N, 3) override color
|
184 |
-
|
185 |
-
Returns:
|
186 |
-
edict containing:
|
187 |
-
color (torch.Tensor): (3, H, W) rendered color image
|
188 |
-
"""
|
189 |
-
resolution = self.rendering_options["resolution"]
|
190 |
-
near = self.rendering_options["near"]
|
191 |
-
far = self.rendering_options["far"]
|
192 |
-
ssaa = self.rendering_options["ssaa"]
|
193 |
-
|
194 |
-
if self.rendering_options["bg_color"] == 'random':
|
195 |
-
self.bg_color = torch.zeros(3, dtype=torch.float32, device="cuda")
|
196 |
-
if np.random.rand() < 0.5:
|
197 |
-
self.bg_color += 1
|
198 |
-
else:
|
199 |
-
self.bg_color = torch.tensor(self.rendering_options["bg_color"], dtype=torch.float32, device="cuda")
|
200 |
-
|
201 |
-
view = extrinsics
|
202 |
-
perspective = intrinsics_to_projection(intrinsics, near, far)
|
203 |
-
camera = torch.inverse(view)[:3, 3]
|
204 |
-
focalx = intrinsics[0, 0]
|
205 |
-
focaly = intrinsics[1, 1]
|
206 |
-
fovx = 2 * torch.atan(0.5 / focalx)
|
207 |
-
fovy = 2 * torch.atan(0.5 / focaly)
|
208 |
-
|
209 |
-
camera_dict = edict({
|
210 |
-
"image_height": resolution * ssaa,
|
211 |
-
"image_width": resolution * ssaa,
|
212 |
-
"FoVx": fovx,
|
213 |
-
"FoVy": fovy,
|
214 |
-
"znear": near,
|
215 |
-
"zfar": far,
|
216 |
-
"world_view_transform": view.T.contiguous(),
|
217 |
-
"projection_matrix": perspective.T.contiguous(),
|
218 |
-
"full_proj_transform": (perspective @ view).T.contiguous(),
|
219 |
-
"camera_center": camera
|
220 |
-
})
|
221 |
-
|
222 |
-
# Render
|
223 |
-
render_ret = render(camera_dict, gausssian, self.pipe, self.bg_color, override_color=colors_overwrite, scaling_modifier=self.pipe.scale_modifier)
|
224 |
-
|
225 |
-
if ssaa > 1:
|
226 |
-
render_ret.render = F.interpolate(render_ret.render[None], size=(resolution, resolution), mode='bilinear', align_corners=False, antialias=True).squeeze()
|
227 |
-
|
228 |
-
ret = edict({
|
229 |
-
'color': render_ret['render']
|
230 |
-
})
|
231 |
-
return ret
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
trellis/renderers/mesh_renderer.py
DELETED
@@ -1,140 +0,0 @@
|
|
1 |
-
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2 |
-
#
|
3 |
-
# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property
|
4 |
-
# and proprietary rights in and to this software, related documentation
|
5 |
-
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
-
# distribution of this software and related documentation without an express
|
7 |
-
# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited.
|
8 |
-
import torch
|
9 |
-
import nvdiffrast.torch as dr
|
10 |
-
from easydict import EasyDict as edict
|
11 |
-
from ..representations.mesh import MeshExtractResult
|
12 |
-
import torch.nn.functional as F
|
13 |
-
|
14 |
-
|
15 |
-
def intrinsics_to_projection(
|
16 |
-
intrinsics: torch.Tensor,
|
17 |
-
near: float,
|
18 |
-
far: float,
|
19 |
-
) -> torch.Tensor:
|
20 |
-
"""
|
21 |
-
OpenCV intrinsics to OpenGL perspective matrix
|
22 |
-
|
23 |
-
Args:
|
24 |
-
intrinsics (torch.Tensor): [3, 3] OpenCV intrinsics matrix
|
25 |
-
near (float): near plane to clip
|
26 |
-
far (float): far plane to clip
|
27 |
-
Returns:
|
28 |
-
(torch.Tensor): [4, 4] OpenGL perspective matrix
|
29 |
-
"""
|
30 |
-
fx, fy = intrinsics[0, 0], intrinsics[1, 1]
|
31 |
-
cx, cy = intrinsics[0, 2], intrinsics[1, 2]
|
32 |
-
ret = torch.zeros((4, 4), dtype=intrinsics.dtype, device=intrinsics.device)
|
33 |
-
ret[0, 0] = 2 * fx
|
34 |
-
ret[1, 1] = 2 * fy
|
35 |
-
ret[0, 2] = 2 * cx - 1
|
36 |
-
ret[1, 2] = - 2 * cy + 1
|
37 |
-
ret[2, 2] = far / (far - near)
|
38 |
-
ret[2, 3] = near * far / (near - far)
|
39 |
-
ret[3, 2] = 1.
|
40 |
-
return ret
|
41 |
-
|
42 |
-
|
43 |
-
class MeshRenderer:
|
44 |
-
"""
|
45 |
-
Renderer for the Mesh representation.
|
46 |
-
|
47 |
-
Args:
|
48 |
-
rendering_options (dict): Rendering options.
|
49 |
-
glctx (nvdiffrast.torch.RasterizeGLContext): RasterizeGLContext object for CUDA/OpenGL interop.
|
50 |
-
"""
|
51 |
-
def __init__(self, rendering_options={}, device='cuda'):
|
52 |
-
self.rendering_options = edict({
|
53 |
-
"resolution": None,
|
54 |
-
"near": None,
|
55 |
-
"far": None,
|
56 |
-
"ssaa": 1
|
57 |
-
})
|
58 |
-
self.rendering_options.update(rendering_options)
|
59 |
-
self.glctx = dr.RasterizeCudaContext(device=device)
|
60 |
-
self.device=device
|
61 |
-
|
62 |
-
def render(
|
63 |
-
self,
|
64 |
-
mesh : MeshExtractResult,
|
65 |
-
extrinsics: torch.Tensor,
|
66 |
-
intrinsics: torch.Tensor,
|
67 |
-
return_types = ["mask", "normal", "depth"]
|
68 |
-
) -> edict:
|
69 |
-
"""
|
70 |
-
Render the mesh.
|
71 |
-
|
72 |
-
Args:
|
73 |
-
mesh : meshmodel
|
74 |
-
extrinsics (torch.Tensor): (4, 4) camera extrinsics
|
75 |
-
intrinsics (torch.Tensor): (3, 3) camera intrinsics
|
76 |
-
return_types (list): list of return types, can be "mask", "depth", "normal_map", "normal", "color"
|
77 |
-
|
78 |
-
Returns:
|
79 |
-
edict based on return_types containing:
|
80 |
-
color (torch.Tensor): [3, H, W] rendered color image
|
81 |
-
depth (torch.Tensor): [H, W] rendered depth image
|
82 |
-
normal (torch.Tensor): [3, H, W] rendered normal image
|
83 |
-
normal_map (torch.Tensor): [3, H, W] rendered normal map image
|
84 |
-
mask (torch.Tensor): [H, W] rendered mask image
|
85 |
-
"""
|
86 |
-
resolution = self.rendering_options["resolution"]
|
87 |
-
near = self.rendering_options["near"]
|
88 |
-
far = self.rendering_options["far"]
|
89 |
-
ssaa = self.rendering_options["ssaa"]
|
90 |
-
|
91 |
-
if mesh.vertices.shape[0] == 0 or mesh.faces.shape[0] == 0:
|
92 |
-
default_img = torch.zeros((1, resolution, resolution, 3), dtype=torch.float32, device=self.device)
|
93 |
-
ret_dict = {k : default_img if k in ['normal', 'normal_map', 'color'] else default_img[..., :1] for k in return_types}
|
94 |
-
return ret_dict
|
95 |
-
|
96 |
-
perspective = intrinsics_to_projection(intrinsics, near, far)
|
97 |
-
|
98 |
-
RT = extrinsics.unsqueeze(0)
|
99 |
-
full_proj = (perspective @ extrinsics).unsqueeze(0)
|
100 |
-
|
101 |
-
vertices = mesh.vertices.unsqueeze(0)
|
102 |
-
|
103 |
-
vertices_homo = torch.cat([vertices, torch.ones_like(vertices[..., :1])], dim=-1)
|
104 |
-
vertices_camera = torch.bmm(vertices_homo, RT.transpose(-1, -2))
|
105 |
-
vertices_clip = torch.bmm(vertices_homo, full_proj.transpose(-1, -2))
|
106 |
-
faces_int = mesh.faces.int()
|
107 |
-
rast, _ = dr.rasterize(
|
108 |
-
self.glctx, vertices_clip, faces_int, (resolution * ssaa, resolution * ssaa))
|
109 |
-
|
110 |
-
out_dict = edict()
|
111 |
-
for type in return_types:
|
112 |
-
img = None
|
113 |
-
if type == "mask" :
|
114 |
-
img = dr.antialias((rast[..., -1:] > 0).float(), rast, vertices_clip, faces_int)
|
115 |
-
elif type == "depth":
|
116 |
-
img = dr.interpolate(vertices_camera[..., 2:3].contiguous(), rast, faces_int)[0]
|
117 |
-
img = dr.antialias(img, rast, vertices_clip, faces_int)
|
118 |
-
elif type == "normal" :
|
119 |
-
img = dr.interpolate(
|
120 |
-
mesh.face_normal.reshape(1, -1, 3), rast,
|
121 |
-
torch.arange(mesh.faces.shape[0] * 3, device=self.device, dtype=torch.int).reshape(-1, 3)
|
122 |
-
)[0]
|
123 |
-
img = dr.antialias(img, rast, vertices_clip, faces_int)
|
124 |
-
# normalize norm pictures
|
125 |
-
img = (img + 1) / 2
|
126 |
-
elif type == "normal_map" :
|
127 |
-
img = dr.interpolate(mesh.vertex_attrs[:, 3:].contiguous(), rast, faces_int)[0]
|
128 |
-
img = dr.antialias(img, rast, vertices_clip, faces_int)
|
129 |
-
elif type == "color" :
|
130 |
-
img = dr.interpolate(mesh.vertex_attrs[:, :3].contiguous(), rast, faces_int)[0]
|
131 |
-
img = dr.antialias(img, rast, vertices_clip, faces_int)
|
132 |
-
|
133 |
-
if ssaa > 1:
|
134 |
-
img = F.interpolate(img.permute(0, 3, 1, 2), (resolution, resolution), mode='bilinear', align_corners=False, antialias=True)
|
135 |
-
img = img.squeeze()
|
136 |
-
else:
|
137 |
-
img = img.permute(0, 3, 1, 2).squeeze()
|
138 |
-
out_dict[type] = img
|
139 |
-
|
140 |
-
return out_dict
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
trellis/renderers/octree_renderer.py
DELETED
@@ -1,300 +0,0 @@
|
|
1 |
-
import numpy as np
|
2 |
-
import torch
|
3 |
-
import torch.nn.functional as F
|
4 |
-
import math
|
5 |
-
import cv2
|
6 |
-
from scipy.stats import qmc
|
7 |
-
from easydict import EasyDict as edict
|
8 |
-
from ..representations.octree import DfsOctree
|
9 |
-
|
10 |
-
|
11 |
-
def intrinsics_to_projection(
|
12 |
-
intrinsics: torch.Tensor,
|
13 |
-
near: float,
|
14 |
-
far: float,
|
15 |
-
) -> torch.Tensor:
|
16 |
-
"""
|
17 |
-
OpenCV intrinsics to OpenGL perspective matrix
|
18 |
-
|
19 |
-
Args:
|
20 |
-
intrinsics (torch.Tensor): [3, 3] OpenCV intrinsics matrix
|
21 |
-
near (float): near plane to clip
|
22 |
-
far (float): far plane to clip
|
23 |
-
Returns:
|
24 |
-
(torch.Tensor): [4, 4] OpenGL perspective matrix
|
25 |
-
"""
|
26 |
-
fx, fy = intrinsics[0, 0], intrinsics[1, 1]
|
27 |
-
cx, cy = intrinsics[0, 2], intrinsics[1, 2]
|
28 |
-
ret = torch.zeros((4, 4), dtype=intrinsics.dtype, device=intrinsics.device)
|
29 |
-
ret[0, 0] = 2 * fx
|
30 |
-
ret[1, 1] = 2 * fy
|
31 |
-
ret[0, 2] = 2 * cx - 1
|
32 |
-
ret[1, 2] = - 2 * cy + 1
|
33 |
-
ret[2, 2] = far / (far - near)
|
34 |
-
ret[2, 3] = near * far / (near - far)
|
35 |
-
ret[3, 2] = 1.
|
36 |
-
return ret
|
37 |
-
|
38 |
-
|
39 |
-
def render(viewpoint_camera, octree : DfsOctree, pipe, bg_color : torch.Tensor, scaling_modifier = 1.0, used_rank = None, colors_overwrite = None, aux=None, halton_sampler=None):
|
40 |
-
"""
|
41 |
-
Render the scene.
|
42 |
-
|
43 |
-
Background tensor (bg_color) must be on GPU!
|
44 |
-
"""
|
45 |
-
# lazy import
|
46 |
-
if 'OctreeTrivecRasterizer' not in globals():
|
47 |
-
from diffoctreerast import OctreeVoxelRasterizer, OctreeGaussianRasterizer, OctreeTrivecRasterizer, OctreeDecoupolyRasterizer
|
48 |
-
|
49 |
-
# Set up rasterization configuration
|
50 |
-
tanfovx = math.tan(viewpoint_camera.FoVx * 0.5)
|
51 |
-
tanfovy = math.tan(viewpoint_camera.FoVy * 0.5)
|
52 |
-
|
53 |
-
raster_settings = edict(
|
54 |
-
image_height=int(viewpoint_camera.image_height),
|
55 |
-
image_width=int(viewpoint_camera.image_width),
|
56 |
-
tanfovx=tanfovx,
|
57 |
-
tanfovy=tanfovy,
|
58 |
-
bg=bg_color,
|
59 |
-
scale_modifier=scaling_modifier,
|
60 |
-
viewmatrix=viewpoint_camera.world_view_transform,
|
61 |
-
projmatrix=viewpoint_camera.full_proj_transform,
|
62 |
-
sh_degree=octree.active_sh_degree,
|
63 |
-
campos=viewpoint_camera.camera_center,
|
64 |
-
with_distloss=pipe.with_distloss,
|
65 |
-
jitter=pipe.jitter,
|
66 |
-
debug=pipe.debug,
|
67 |
-
)
|
68 |
-
|
69 |
-
positions = octree.get_xyz
|
70 |
-
if octree.primitive == "voxel":
|
71 |
-
densities = octree.get_density
|
72 |
-
elif octree.primitive == "gaussian":
|
73 |
-
opacities = octree.get_opacity
|
74 |
-
elif octree.primitive == "trivec":
|
75 |
-
trivecs = octree.get_trivec
|
76 |
-
densities = octree.get_density
|
77 |
-
raster_settings.density_shift = octree.density_shift
|
78 |
-
elif octree.primitive == "decoupoly":
|
79 |
-
decoupolys_V, decoupolys_g = octree.get_decoupoly
|
80 |
-
densities = octree.get_density
|
81 |
-
raster_settings.density_shift = octree.density_shift
|
82 |
-
else:
|
83 |
-
raise ValueError(f"Unknown primitive {octree.primitive}")
|
84 |
-
depths = octree.get_depth
|
85 |
-
|
86 |
-
# If precomputed colors are provided, use them. Otherwise, if it is desired to precompute colors
|
87 |
-
# from SHs in Python, do it. If not, then SH -> RGB conversion will be done by rasterizer.
|
88 |
-
colors_precomp = None
|
89 |
-
shs = octree.get_features
|
90 |
-
if octree.primitive in ["voxel", "gaussian"] and colors_overwrite is not None:
|
91 |
-
colors_precomp = colors_overwrite
|
92 |
-
shs = None
|
93 |
-
|
94 |
-
ret = edict()
|
95 |
-
|
96 |
-
if octree.primitive == "voxel":
|
97 |
-
renderer = OctreeVoxelRasterizer(raster_settings=raster_settings)
|
98 |
-
rgb, depth, alpha, distloss = renderer(
|
99 |
-
positions = positions,
|
100 |
-
densities = densities,
|
101 |
-
shs = shs,
|
102 |
-
colors_precomp = colors_precomp,
|
103 |
-
depths = depths,
|
104 |
-
aabb = octree.aabb,
|
105 |
-
aux = aux,
|
106 |
-
)
|
107 |
-
ret['rgb'] = rgb
|
108 |
-
ret['depth'] = depth
|
109 |
-
ret['alpha'] = alpha
|
110 |
-
ret['distloss'] = distloss
|
111 |
-
elif octree.primitive == "gaussian":
|
112 |
-
renderer = OctreeGaussianRasterizer(raster_settings=raster_settings)
|
113 |
-
rgb, depth, alpha = renderer(
|
114 |
-
positions = positions,
|
115 |
-
opacities = opacities,
|
116 |
-
shs = shs,
|
117 |
-
colors_precomp = colors_precomp,
|
118 |
-
depths = depths,
|
119 |
-
aabb = octree.aabb,
|
120 |
-
aux = aux,
|
121 |
-
)
|
122 |
-
ret['rgb'] = rgb
|
123 |
-
ret['depth'] = depth
|
124 |
-
ret['alpha'] = alpha
|
125 |
-
elif octree.primitive == "trivec":
|
126 |
-
raster_settings.used_rank = used_rank if used_rank is not None else trivecs.shape[1]
|
127 |
-
renderer = OctreeTrivecRasterizer(raster_settings=raster_settings)
|
128 |
-
rgb, depth, alpha, percent_depth = renderer(
|
129 |
-
positions = positions,
|
130 |
-
trivecs = trivecs,
|
131 |
-
densities = densities,
|
132 |
-
shs = shs,
|
133 |
-
colors_precomp = colors_precomp,
|
134 |
-
colors_overwrite = colors_overwrite,
|
135 |
-
depths = depths,
|
136 |
-
aabb = octree.aabb,
|
137 |
-
aux = aux,
|
138 |
-
halton_sampler = halton_sampler,
|
139 |
-
)
|
140 |
-
ret['percent_depth'] = percent_depth
|
141 |
-
ret['rgb'] = rgb
|
142 |
-
ret['depth'] = depth
|
143 |
-
ret['alpha'] = alpha
|
144 |
-
elif octree.primitive == "decoupoly":
|
145 |
-
raster_settings.used_rank = used_rank if used_rank is not None else decoupolys_V.shape[1]
|
146 |
-
renderer = OctreeDecoupolyRasterizer(raster_settings=raster_settings)
|
147 |
-
rgb, depth, alpha = renderer(
|
148 |
-
positions = positions,
|
149 |
-
decoupolys_V = decoupolys_V,
|
150 |
-
decoupolys_g = decoupolys_g,
|
151 |
-
densities = densities,
|
152 |
-
shs = shs,
|
153 |
-
colors_precomp = colors_precomp,
|
154 |
-
depths = depths,
|
155 |
-
aabb = octree.aabb,
|
156 |
-
aux = aux,
|
157 |
-
)
|
158 |
-
ret['rgb'] = rgb
|
159 |
-
ret['depth'] = depth
|
160 |
-
ret['alpha'] = alpha
|
161 |
-
|
162 |
-
return ret
|
163 |
-
|
164 |
-
|
165 |
-
class OctreeRenderer:
|
166 |
-
"""
|
167 |
-
Renderer for the Voxel representation.
|
168 |
-
|
169 |
-
Args:
|
170 |
-
rendering_options (dict): Rendering options.
|
171 |
-
"""
|
172 |
-
|
173 |
-
def __init__(self, rendering_options={}) -> None:
|
174 |
-
try:
|
175 |
-
import diffoctreerast
|
176 |
-
except ImportError:
|
177 |
-
print("\033[93m[WARNING] diffoctreerast is not installed. The renderer will be disabled.\033[0m")
|
178 |
-
self.unsupported = True
|
179 |
-
else:
|
180 |
-
self.unsupported = False
|
181 |
-
|
182 |
-
self.pipe = edict({
|
183 |
-
"with_distloss": False,
|
184 |
-
"with_aux": False,
|
185 |
-
"scale_modifier": 1.0,
|
186 |
-
"used_rank": None,
|
187 |
-
"jitter": False,
|
188 |
-
"debug": False,
|
189 |
-
})
|
190 |
-
self.rendering_options = edict({
|
191 |
-
"resolution": None,
|
192 |
-
"near": None,
|
193 |
-
"far": None,
|
194 |
-
"ssaa": 1,
|
195 |
-
"bg_color": 'random',
|
196 |
-
})
|
197 |
-
self.halton_sampler = qmc.Halton(2, scramble=False)
|
198 |
-
self.rendering_options.update(rendering_options)
|
199 |
-
self.bg_color = None
|
200 |
-
|
201 |
-
def render(
|
202 |
-
self,
|
203 |
-
octree: DfsOctree,
|
204 |
-
extrinsics: torch.Tensor,
|
205 |
-
intrinsics: torch.Tensor,
|
206 |
-
colors_overwrite: torch.Tensor = None,
|
207 |
-
) -> edict:
|
208 |
-
"""
|
209 |
-
Render the octree.
|
210 |
-
|
211 |
-
Args:
|
212 |
-
octree (Octree): octree
|
213 |
-
extrinsics (torch.Tensor): (4, 4) camera extrinsics
|
214 |
-
intrinsics (torch.Tensor): (3, 3) camera intrinsics
|
215 |
-
colors_overwrite (torch.Tensor): (N, 3) override color
|
216 |
-
|
217 |
-
Returns:
|
218 |
-
edict containing:
|
219 |
-
color (torch.Tensor): (3, H, W) rendered color
|
220 |
-
depth (torch.Tensor): (H, W) rendered depth
|
221 |
-
alpha (torch.Tensor): (H, W) rendered alpha
|
222 |
-
distloss (Optional[torch.Tensor]): (H, W) rendered distance loss
|
223 |
-
percent_depth (Optional[torch.Tensor]): (H, W) rendered percent depth
|
224 |
-
aux (Optional[edict]): auxiliary tensors
|
225 |
-
"""
|
226 |
-
resolution = self.rendering_options["resolution"]
|
227 |
-
near = self.rendering_options["near"]
|
228 |
-
far = self.rendering_options["far"]
|
229 |
-
ssaa = self.rendering_options["ssaa"]
|
230 |
-
|
231 |
-
if self.unsupported:
|
232 |
-
image = np.zeros((512, 512, 3), dtype=np.uint8)
|
233 |
-
text_bbox = cv2.getTextSize("Unsupported", cv2.FONT_HERSHEY_SIMPLEX, 2, 3)[0]
|
234 |
-
origin = (512 - text_bbox[0]) // 2, (512 - text_bbox[1]) // 2
|
235 |
-
image = cv2.putText(image, "Unsupported", origin, cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 255, 255), 3, cv2.LINE_AA)
|
236 |
-
return {
|
237 |
-
'color': torch.tensor(image, dtype=torch.float32).permute(2, 0, 1) / 255,
|
238 |
-
}
|
239 |
-
|
240 |
-
if self.rendering_options["bg_color"] == 'random':
|
241 |
-
self.bg_color = torch.zeros(3, dtype=torch.float32, device="cuda")
|
242 |
-
if np.random.rand() < 0.5:
|
243 |
-
self.bg_color += 1
|
244 |
-
else:
|
245 |
-
self.bg_color = torch.tensor(self.rendering_options["bg_color"], dtype=torch.float32, device="cuda")
|
246 |
-
|
247 |
-
if self.pipe["with_aux"]:
|
248 |
-
aux = {
|
249 |
-
'grad_color2': torch.zeros((octree.num_leaf_nodes, 3), dtype=torch.float32, requires_grad=True, device="cuda") + 0,
|
250 |
-
'contributions': torch.zeros((octree.num_leaf_nodes, 1), dtype=torch.float32, requires_grad=True, device="cuda") + 0,
|
251 |
-
}
|
252 |
-
for k in aux.keys():
|
253 |
-
aux[k].requires_grad_()
|
254 |
-
aux[k].retain_grad()
|
255 |
-
else:
|
256 |
-
aux = None
|
257 |
-
|
258 |
-
view = extrinsics
|
259 |
-
perspective = intrinsics_to_projection(intrinsics, near, far)
|
260 |
-
camera = torch.inverse(view)[:3, 3]
|
261 |
-
focalx = intrinsics[0, 0]
|
262 |
-
focaly = intrinsics[1, 1]
|
263 |
-
fovx = 2 * torch.atan(0.5 / focalx)
|
264 |
-
fovy = 2 * torch.atan(0.5 / focaly)
|
265 |
-
|
266 |
-
camera_dict = edict({
|
267 |
-
"image_height": resolution * ssaa,
|
268 |
-
"image_width": resolution * ssaa,
|
269 |
-
"FoVx": fovx,
|
270 |
-
"FoVy": fovy,
|
271 |
-
"znear": near,
|
272 |
-
"zfar": far,
|
273 |
-
"world_view_transform": view.T.contiguous(),
|
274 |
-
"projection_matrix": perspective.T.contiguous(),
|
275 |
-
"full_proj_transform": (perspective @ view).T.contiguous(),
|
276 |
-
"camera_center": camera
|
277 |
-
})
|
278 |
-
|
279 |
-
# Render
|
280 |
-
render_ret = render(camera_dict, octree, self.pipe, self.bg_color, aux=aux, colors_overwrite=colors_overwrite, scaling_modifier=self.pipe.scale_modifier, used_rank=self.pipe.used_rank, halton_sampler=self.halton_sampler)
|
281 |
-
|
282 |
-
if ssaa > 1:
|
283 |
-
render_ret.rgb = F.interpolate(render_ret.rgb[None], size=(resolution, resolution), mode='bilinear', align_corners=False, antialias=True).squeeze()
|
284 |
-
render_ret.depth = F.interpolate(render_ret.depth[None, None], size=(resolution, resolution), mode='bilinear', align_corners=False, antialias=True).squeeze()
|
285 |
-
render_ret.alpha = F.interpolate(render_ret.alpha[None, None], size=(resolution, resolution), mode='bilinear', align_corners=False, antialias=True).squeeze()
|
286 |
-
if hasattr(render_ret, 'percent_depth'):
|
287 |
-
render_ret.percent_depth = F.interpolate(render_ret.percent_depth[None, None], size=(resolution, resolution), mode='bilinear', align_corners=False, antialias=True).squeeze()
|
288 |
-
|
289 |
-
ret = edict({
|
290 |
-
'color': render_ret.rgb,
|
291 |
-
'depth': render_ret.depth,
|
292 |
-
'alpha': render_ret.alpha,
|
293 |
-
})
|
294 |
-
if self.pipe["with_distloss"] and 'distloss' in render_ret:
|
295 |
-
ret['distloss'] = render_ret.distloss
|
296 |
-
if self.pipe["with_aux"]:
|
297 |
-
ret['aux'] = aux
|
298 |
-
if hasattr(render_ret, 'percent_depth'):
|
299 |
-
ret['percent_depth'] = render_ret.percent_depth
|
300 |
-
return ret
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
trellis/renderers/sh_utils.py
DELETED
@@ -1,118 +0,0 @@
|
|
1 |
-
# Copyright 2021 The PlenOctree Authors.
|
2 |
-
# Redistribution and use in source and binary forms, with or without
|
3 |
-
# modification, are permitted provided that the following conditions are met:
|
4 |
-
#
|
5 |
-
# 1. Redistributions of source code must retain the above copyright notice,
|
6 |
-
# this list of conditions and the following disclaimer.
|
7 |
-
#
|
8 |
-
# 2. Redistributions in binary form must reproduce the above copyright notice,
|
9 |
-
# this list of conditions and the following disclaimer in the documentation
|
10 |
-
# and/or other materials provided with the distribution.
|
11 |
-
#
|
12 |
-
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
13 |
-
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
14 |
-
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
15 |
-
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
16 |
-
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
17 |
-
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
18 |
-
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
19 |
-
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
20 |
-
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
21 |
-
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
22 |
-
# POSSIBILITY OF SUCH DAMAGE.
|
23 |
-
|
24 |
-
import torch
|
25 |
-
|
26 |
-
C0 = 0.28209479177387814
|
27 |
-
C1 = 0.4886025119029199
|
28 |
-
C2 = [
|
29 |
-
1.0925484305920792,
|
30 |
-
-1.0925484305920792,
|
31 |
-
0.31539156525252005,
|
32 |
-
-1.0925484305920792,
|
33 |
-
0.5462742152960396
|
34 |
-
]
|
35 |
-
C3 = [
|
36 |
-
-0.5900435899266435,
|
37 |
-
2.890611442640554,
|
38 |
-
-0.4570457994644658,
|
39 |
-
0.3731763325901154,
|
40 |
-
-0.4570457994644658,
|
41 |
-
1.445305721320277,
|
42 |
-
-0.5900435899266435
|
43 |
-
]
|
44 |
-
C4 = [
|
45 |
-
2.5033429417967046,
|
46 |
-
-1.7701307697799304,
|
47 |
-
0.9461746957575601,
|
48 |
-
-0.6690465435572892,
|
49 |
-
0.10578554691520431,
|
50 |
-
-0.6690465435572892,
|
51 |
-
0.47308734787878004,
|
52 |
-
-1.7701307697799304,
|
53 |
-
0.6258357354491761,
|
54 |
-
]
|
55 |
-
|
56 |
-
|
57 |
-
def eval_sh(deg, sh, dirs):
|
58 |
-
"""
|
59 |
-
Evaluate spherical harmonics at unit directions
|
60 |
-
using hardcoded SH polynomials.
|
61 |
-
Works with torch/np/jnp.
|
62 |
-
... Can be 0 or more batch dimensions.
|
63 |
-
Args:
|
64 |
-
deg: int SH deg. Currently, 0-3 supported
|
65 |
-
sh: jnp.ndarray SH coeffs [..., C, (deg + 1) ** 2]
|
66 |
-
dirs: jnp.ndarray unit directions [..., 3]
|
67 |
-
Returns:
|
68 |
-
[..., C]
|
69 |
-
"""
|
70 |
-
assert deg <= 4 and deg >= 0
|
71 |
-
coeff = (deg + 1) ** 2
|
72 |
-
assert sh.shape[-1] >= coeff
|
73 |
-
|
74 |
-
result = C0 * sh[..., 0]
|
75 |
-
if deg > 0:
|
76 |
-
x, y, z = dirs[..., 0:1], dirs[..., 1:2], dirs[..., 2:3]
|
77 |
-
result = (result -
|
78 |
-
C1 * y * sh[..., 1] +
|
79 |
-
C1 * z * sh[..., 2] -
|
80 |
-
C1 * x * sh[..., 3])
|
81 |
-
|
82 |
-
if deg > 1:
|
83 |
-
xx, yy, zz = x * x, y * y, z * z
|
84 |
-
xy, yz, xz = x * y, y * z, x * z
|
85 |
-
result = (result +
|
86 |
-
C2[0] * xy * sh[..., 4] +
|
87 |
-
C2[1] * yz * sh[..., 5] +
|
88 |
-
C2[2] * (2.0 * zz - xx - yy) * sh[..., 6] +
|
89 |
-
C2[3] * xz * sh[..., 7] +
|
90 |
-
C2[4] * (xx - yy) * sh[..., 8])
|
91 |
-
|
92 |
-
if deg > 2:
|
93 |
-
result = (result +
|
94 |
-
C3[0] * y * (3 * xx - yy) * sh[..., 9] +
|
95 |
-
C3[1] * xy * z * sh[..., 10] +
|
96 |
-
C3[2] * y * (4 * zz - xx - yy)* sh[..., 11] +
|
97 |
-
C3[3] * z * (2 * zz - 3 * xx - 3 * yy) * sh[..., 12] +
|
98 |
-
C3[4] * x * (4 * zz - xx - yy) * sh[..., 13] +
|
99 |
-
C3[5] * z * (xx - yy) * sh[..., 14] +
|
100 |
-
C3[6] * x * (xx - 3 * yy) * sh[..., 15])
|
101 |
-
|
102 |
-
if deg > 3:
|
103 |
-
result = (result + C4[0] * xy * (xx - yy) * sh[..., 16] +
|
104 |
-
C4[1] * yz * (3 * xx - yy) * sh[..., 17] +
|
105 |
-
C4[2] * xy * (7 * zz - 1) * sh[..., 18] +
|
106 |
-
C4[3] * yz * (7 * zz - 3) * sh[..., 19] +
|
107 |
-
C4[4] * (zz * (35 * zz - 30) + 3) * sh[..., 20] +
|
108 |
-
C4[5] * xz * (7 * zz - 3) * sh[..., 21] +
|
109 |
-
C4[6] * (xx - yy) * (7 * zz - 1) * sh[..., 22] +
|
110 |
-
C4[7] * xz * (xx - 3 * yy) * sh[..., 23] +
|
111 |
-
C4[8] * (xx * (xx - 3 * yy) - yy * (3 * xx - yy)) * sh[..., 24])
|
112 |
-
return result
|
113 |
-
|
114 |
-
def RGB2SH(rgb):
|
115 |
-
return (rgb - 0.5) / C0
|
116 |
-
|
117 |
-
def SH2RGB(sh):
|
118 |
-
return sh * C0 + 0.5
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|