File size: 13,719 Bytes
e67f19a
 
4ac158b
e67f19a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e7dc72
 
 
 
d68a8fc
9494751
e67f19a
 
 
 
 
 
6e7dc72
 
 
e67f19a
 
 
6e7dc72
 
 
 
 
 
 
 
 
 
 
e67f19a
 
6e7dc72
e67f19a
6e7dc72
e67f19a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e7dc72
 
 
e67f19a
 
 
 
 
 
 
 
 
8ce7824
e67f19a
7792d1e
6e7dc72
 
e67f19a
 
6e7dc72
e67f19a
6e7dc72
e67f19a
6e7dc72
e67f19a
d68a8fc
e67f19a
 
 
 
 
6e7dc72
 
 
 
e67f19a
6e7dc72
273779b
e67f19a
 
 
 
 
 
 
 
 
 
 
6e7dc72
 
 
e67f19a
 
 
 
 
 
 
 
 
 
 
 
 
 
6e7dc72
e67f19a
 
 
 
 
 
 
6e7dc72
e67f19a
 
 
 
 
 
 
 
 
6e7dc72
 
 
e67f19a
 
 
 
 
6e7dc72
e67f19a
 
33b5608
e67f19a
 
33b5608
 
 
4ac158b
33b5608
e67f19a
33b5608
e67f19a
 
 
4ac158b
e67f19a
 
 
 
80754e9
 
e67f19a
 
d100aeb
 
 
e67f19a
 
 
4ac158b
33b5608
d100aeb
 
33b5608
d100aeb
 
6e7dc72
140a713
 
 
 
 
 
 
 
 
6e7dc72
aa34c9c
 
 
33b5608
bdfe6c6
6e7dc72
e67f19a
 
33b5608
d100aeb
 
e67f19a
d68a8fc
273779b
e67f19a
e528abc
d100aeb
 
33b5608
d100aeb
 
273779b
 
 
b0a40d6
 
 
 
273779b
e67f19a
140a713
aea6b1f
140a713
 
 
 
 
 
e67f19a
 
33b5608
 
e67f19a
33b5608
7792d1e
33b5608
 
7792d1e
 
d100aeb
e67f19a
 
 
 
 
 
 
 
33b5608
7792d1e
 
 
 
33b5608
e67f19a
 
d1856b7
e67f19a
 
 
 
 
 
fc88d1a
d1856b7
e67f19a
bd6dd54
e67f19a
33b5608
d1856b7
96a99df
d1856b7
 
 
33b5608
25c898d
fbfc277
33b5608
e67f19a
5422690
e67f19a
33b5608
e67f19a
 
 
 
 
9a5a36b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
import gradio as gr
import spaces

import os
import shutil
import random
import uuid
from datetime import datetime
from diffusers import DiffusionPipeline
os.environ['SPCONV_ALGO'] = 'native'
from typing import *
import torch
import numpy as np
import imageio
from easydict import EasyDict as edict
from PIL import Image
from trellis.pipelines import TrellisImageTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils
import logging

logging.basicConfig(level=logging.INFO, format='%(asctime)s - HF_SPACE_IMG - %(levelname)s - %(message)s')

NUM_INFERENCE_STEPS = 8
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
# Constants
MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
os.makedirs(TMP_DIR, exist_ok=True)

def start_session(req: gr.Request):
    session_hash = str(req.session_hash)
    user_dir = os.path.join(TMP_DIR, session_hash)
    logging.info(f"START SESSION: Creando directorio para la sesi贸n {session_hash} en {user_dir}")
    os.makedirs(user_dir, exist_ok=True)

def end_session(req: gr.Request):
    session_hash = str(req.session_hash)
    user_dir = os.path.join(TMP_DIR, session_hash)
    logging.info(f"END SESSION: Intentando eliminar el directorio de la sesi贸n {session_hash} en {user_dir}")
    if os.path.exists(user_dir):
        try:
            shutil.rmtree(user_dir)
            logging.info(f"Directorio de la sesi贸n {session_hash} eliminado correctamente.")
        except Exception as e:
            logging.error(f"Error al eliminar el directorio de la sesi贸n {session_hash}: {e}")
    else:
        logging.warning(f"El directorio de la sesi贸n {session_hash} no fue encontrado al intentar eliminarlo. Es posible que ya haya sido limpiado.")

def preprocess_image(image: Image.Image) -> Image.Image:
    logging.info("Preprocesando imagen para Trellis...")
    processed_image = trellis_pipeline.preprocess_image(image)
    logging.info("Preprocesamiento de imagen completado.")
    return processed_image

def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
    return {
        'gaussian': {
            **gs.init_params,
            '_xyz': gs._xyz.cpu().numpy(),
            '_features_dc': gs._features_dc.cpu().numpy(),
            '_scaling': gs._scaling.cpu().numpy(),
            '_rotation': gs._rotation.cpu().numpy(),
            '_opacity': gs._opacity.cpu().numpy(),
        },
        'mesh': {
            'vertices': mesh.vertices.cpu().numpy(),
            'faces': mesh.faces.cpu().numpy(),
        },
    }

def unpack_state(state: dict) -> Tuple[Gaussian, edict]:
    gs = Gaussian(
        aabb=state['gaussian']['aabb'],
        sh_degree=state['gaussian']['sh_degree'],
        mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
        scaling_bias=state['gaussian']['scaling_bias'],
        opacity_bias=state['gaussian']['opacity_bias'],
        scaling_activation=state['gaussian']['scaling_activation'],
    )
    gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
    gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
    gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
    gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
    gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
    mesh = edict(
        vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
        faces=torch.tensor(state['mesh']['faces'], device='cuda'),
    )
    return gs, mesh

def get_seed(randomize_seed: bool, seed: int) -> int:
    new_seed = np.random.randint(0, MAX_SEED) if randomize_seed else seed
    logging.info(f"Usando seed: {new_seed}")
    return new_seed

@spaces.GPU
def generate_flux_image(
    prompt: str,
    seed: int,
    randomize_seed: bool,
    width: int,
    height: int,
    guidance_scale: float,
    req: gr.Request,
    progress: gr.Progress = gr.Progress(track_tqdm=True),
) -> Image.Image:
    session_hash = str(req.session_hash)
    logging.info(f"[{session_hash}] Iniciando generate_flux_image con prompt: '{prompt[:50]}...'")
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
        logging.info(f"[{session_hash}] Seed aleatorizado a: {seed}")
    generator = torch.Generator(device=device).manual_seed(seed)
    full_prompt = "wbgmsst, " + prompt + ", 3D isometric, white background"
    image = flux_pipeline(
        prompt=full_prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=NUM_INFERENCE_STEPS,
        width=width,
        height=height,
        generator=generator,
    ).images[0]
    
    user_dir = os.path.join(TMP_DIR, session_hash)
    os.makedirs(user_dir, exist_ok=True)
    
    filepath = os.path.join(user_dir, "generated_2d_image.png")
    image.save(filepath)
    logging.info(f"[{session_hash}] Imagen 2D guardada en: {filepath}")
    return image

@spaces.GPU
def image_to_3d(
    image: Image.Image,
    seed: int,
    ss_guidance_strength: float,
    ss_sampling_steps: int,
    slat_guidance_strength: float,
    slat_sampling_steps: int,
    req: gr.Request,
) -> Tuple[dict, str]:
    session_hash = str(req.session_hash)
    logging.info(f"[{session_hash}] Iniciando image_to_3d...")
    user_dir = os.path.join(TMP_DIR, session_hash)
    outputs = trellis_pipeline.run(
        image,
        seed=seed,
        formats=["gaussian", "mesh"],
        preprocess_image=False,
        sparse_structure_sampler_params={
            "steps": ss_sampling_steps,
            "cfg_strength": ss_guidance_strength,
        },
        slat_sampler_params={
            "steps": slat_sampling_steps,
            "cfg_strength": slat_guidance_strength,
        },
    )
    logging.info(f"[{session_hash}] Generaci贸n 3D completada. Renderizando video...")
    video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
    video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
    video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
    video_path = os.path.join(user_dir, 'sample.mp4')
    imageio.mimsave(video_path, video, fps=15)
    state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
    torch.cuda.empty_cache()
    logging.info(f"[{session_hash}] Video renderizado y estado empaquetado. Devolviendo: {video_path}")
    return state, video_path

@spaces.GPU(duration=90)
def extract_glb(
    state: dict,
    mesh_simplify: float,
    texture_size: int,
    req: gr.Request,
) -> Tuple[str, str]:
    session_hash = str(req.session_hash)
    logging.info(f"[{session_hash}] Iniciando extract_glb...")
    user_dir = os.path.join(TMP_DIR, session_hash)
    gs, mesh = unpack_state(state)
    glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
    glb_path = os.path.join(user_dir, 'sample.glb')
    glb.export(glb_path)
    torch.cuda.empty_cache()
    logging.info(f"[{session_hash}] GLB extra铆do. Devolviendo: {glb_path}")
    return glb_path, glb_path

# Interfaz Gradio
with gr.Blocks() as demo:
    gr.Markdown("""
    # UTPL - Conversi贸n de Texto a Imagen a objetos 3D usando IA  
    ### Tesis: *"Objetos tridimensionales creados por IA: Innovaci贸n en entornos virtuales"*  
    **Autor:** Carlos Vargas  
    **Base t茅cnica:** Adaptaci贸n de [TRELLIS](https://trellis3d.github.io/) y [FLUX](https://huggingface.co/camenduru/FLUX.1-dev-diffusers) (herramientas de c贸digo abierto para generaci贸n 3D)  
    **Prop贸sito educativo:** Demostraciones acad茅micas e Investigaci贸n en modelado 3D autom谩tico  
    """)
    
    with gr.Row():
        with gr.Column():
            # Flux image generation inputs
            prompt = gr.Textbox(label="Prompt", placeholder="Enter your game asset description")
            with gr.Accordion("Generation Settings", open=False):
                seed = gr.Slider(0, MAX_SEED, label="Seed", value=42, step=1)
                randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
                with gr.Row():
                    width = gr.Slider(512, 1024, label="Width", value=1024, step=16)
                    height = gr.Slider(512, 1024, label="Height", value=1024, step=16)
                with gr.Row():
                    guidance_scale = gr.Slider(0.0, 10.0, label="Guidance Scale", value=3.5, step=0.1)
            # Botones separados
            generate_image_btn = gr.Button("Generar Imagen")
            generate_video_btn = gr.Button("Generar Video", interactive=False)
        with gr.Column():
            generated_image = gr.Image(label="Generated Asset", type="pil")
            video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True)
        model_output = gr.Model3D(label="Extracted GLB/Gaussian", height=400)
    
    with gr.Row():
        extract_glb_btn = gr.Button("Extract GLB", interactive=False)
    
    with gr.Row():
        download_glb = gr.DownloadButton(label="Download GLB", interactive=False)

    with gr.Accordion("3D Generation Settings", open=False):
        gr.Markdown("Stage 1: Sparse Structure Generation")
        with gr.Row():
            ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
            ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
        gr.Markdown("Stage 2: Structured Latent Generation")
        with gr.Row():
            slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
            slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)

    with gr.Accordion("GLB Extraction Settings", open=False):
        mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
        texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
    
    output_buf = gr.State()

    demo.load(start_session)
    demo.unload(end_session)
    
    # Generar imagen
    generate_image_btn.click(
        generate_flux_image,
        inputs=[prompt, seed, randomize_seed, width, height, guidance_scale],
        outputs=[generated_image]
    ).then(
        lambda: gr.Button(interactive=True),  
        outputs=[generate_video_btn],
    )
    
    # Generar video
    generate_video_btn.click(
        get_seed,
        inputs=[randomize_seed, seed],
        outputs=[seed],
    ).then(
        preprocess_image,
        inputs=[generated_image],
        outputs=[generated_image],
    ).then(
        image_to_3d,
        inputs=[
            generated_image, 
            seed, 
            ss_guidance_strength, 
            ss_sampling_steps, 
            slat_guidance_strength, 
            slat_sampling_steps
        ],
        outputs=[output_buf, video_output],
    ).then(
        lambda: gr.Button(interactive=True),
        outputs=[extract_glb_btn],
    )
    
    video_output.clear(
        lambda: gr.Button(interactive=False),
        outputs=[extract_glb_btn],
    )
    
    # Extraer GLB
    extract_glb_btn.click(
        extract_glb,
        inputs=[output_buf, mesh_simplify, texture_size],
        outputs=[model_output, download_glb],
    ).then(
        lambda: gr.Button(interactive=True),
        outputs=[download_glb],
    )
    
    model_output.clear(
        lambda: gr.Button(interactive=False),
        outputs=[download_glb],
    )

# Initialize both pipelines
if __name__ == "__main__":
    from diffusers import FluxTransformer2DModel, FluxPipeline, BitsAndBytesConfig, GGUFQuantizationConfig
    from transformers import T5EncoderModel, BitsAndBytesConfig as BitsAndBytesConfigTF
    
    # Initialize Flux pipeline
    device = "cuda" if torch.cuda.is_available() else "cpu"
    huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
    dtype = torch.bfloat16
    file_url = "https://huggingface.co/gokaygokay/flux-game/blob/main/hyperflux_00001_.q8_0.gguf"
    file_url = file_url.replace("/resolve/main/", "/blob/main/").replace("?download=true", "")
    single_file_base_model = "camenduru/FLUX.1-dev-diffusers"
    quantization_config_tf = BitsAndBytesConfigTF(load_in_8bit=True, bnb_8bit_compute_dtype=torch.bfloat16)
    text_encoder_2 = T5EncoderModel.from_pretrained(single_file_base_model, subfolder="text_encoder_2", torch_dtype=dtype, config=single_file_base_model, quantization_config=quantization_config_tf, token=huggingface_token)
    
    if ".gguf" in file_url:
        transformer = FluxTransformer2DModel.from_single_file(file_url, subfolder="transformer", quantization_config=GGUFQuantizationConfig(compute_dtype=dtype), torch_dtype=dtype, config=single_file_base_model)
    else:
        quantization_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.bfloat16, token=huggingface_token)
        transformer = FluxTransformer2DModel.from_single_file(file_url, subfolder="transformer", torch_dtype=dtype, config=single_file_base_model, quantization_config=quantization_config, token=huggingface_token)
    
    flux_pipeline = FluxPipeline.from_pretrained(single_file_base_model, transformer=transformer, text_encoder_2=text_encoder_2, torch_dtype=dtype, token=huggingface_token)
    flux_pipeline.to("cuda")
    
    # Initialize Trellis pipeline
    trellis_pipeline = TrellisImageTo3DPipeline.from_pretrained("cavargas10/TRELLIS")
    trellis_pipeline.cuda()
    
    try:
        trellis_pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8)))
    except:
        pass
    
    demo.launch(show_error=True)