File size: 4,669 Bytes
dcfb67c
 
 
 
 
 
 
 
 
 
4d30baa
 
 
 
 
 
 
 
 
ce3f7c0
4d30baa
dcfb67c
 
 
 
 
 
 
 
 
 
 
 
 
 
8948197
 
 
 
 
 
 
 
 
 
 
 
dcfb67c
 
 
8948197
 
 
 
 
 
 
 
 
 
 
 
dcfb67c
 
 
8948197
 
 
 
 
 
 
 
 
 
 
 
dcfb67c
 
 
4d30baa
 
 
 
 
dcfb67c
4d30baa
 
dcfb67c
4d30baa
 
 
8948197
4d30baa
 
 
 
ce3f7c0
 
 
 
 
8948197
dcfb67c
4d30baa
 
 
dcfb67c
 
 
 
dc3911f
dcfb67c
 
 
dc3911f
dcfb67c
 
 
 
 
4d30baa
 
dcfb67c
 
4d30baa
 
dcfb67c
4d30baa
dcfb67c
 
 
 
 
 
4d30baa
dcfb67c
 
 
4d30baa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcfb67c
 
4d30baa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import os
import torch
import shutil
import librosa
import warnings
import numpy as np
import gradio as gr
import librosa.display
import matplotlib.pyplot as plt
from model import EvalNet
from utils import (
    get_modelist,
    find_audio_files,
    embed_img,
    _L,
    SAMPLE_RATE,
    TEMP_DIR,
    TRANSLATE,
    CLASSES,
    EN_US,
)


def zero_padding(y: np.ndarray, end: int):
    size = len(y)
    if size < end:
        return np.concatenate((y, np.zeros(end - size)))

    elif size > end:
        return y[-end:]

    return y


def audio2mel(audio_path: str, seg_len=20):
    y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
    y = zero_padding(y, seg_len * sr)
    mel_spec = librosa.feature.melspectrogram(y=y, sr=sr)
    log_mel_spec = librosa.power_to_db(mel_spec, ref=np.max)
    librosa.display.specshow(log_mel_spec)
    plt.axis("off")
    plt.savefig(
        f"{TEMP_DIR}/output.jpg",
        bbox_inches="tight",
        pad_inches=0.0,
    )
    plt.close()


def audio2cqt(audio_path: str, seg_len=20):
    y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
    y = zero_padding(y, seg_len * sr)
    cqt_spec = librosa.cqt(y=y, sr=sr)
    log_cqt_spec = librosa.power_to_db(np.abs(cqt_spec) ** 2, ref=np.max)
    librosa.display.specshow(log_cqt_spec)
    plt.axis("off")
    plt.savefig(
        f"{TEMP_DIR}/output.jpg",
        bbox_inches="tight",
        pad_inches=0.0,
    )
    plt.close()


def audio2chroma(audio_path: str, seg_len=20):
    y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
    y = zero_padding(y, seg_len * sr)
    chroma_spec = librosa.feature.chroma_stft(y=y, sr=sr)
    log_chroma_spec = librosa.power_to_db(np.abs(chroma_spec) ** 2, ref=np.max)
    librosa.display.specshow(log_chroma_spec)
    plt.axis("off")
    plt.savefig(
        f"{TEMP_DIR}/output.jpg",
        bbox_inches="tight",
        pad_inches=0.0,
    )
    plt.close()


def infer(wav_path: str, log_name: str, folder_path=TEMP_DIR):
    status = "Success"
    filename = result = None
    try:
        if os.path.exists(folder_path):
            shutil.rmtree(folder_path)

        if not wav_path:
            raise ValueError("请输入音频!")

        spec = log_name.split("_")[-3]
        os.makedirs(folder_path, exist_ok=True)
        model = EvalNet(log_name, len(TRANSLATE)).model
        eval("audio2%s" % spec)(wav_path)
        input = embed_img(f"{folder_path}/output.jpg")
        output: torch.Tensor = model(input)
        pred_id = torch.max(output.data, 1)[1]
        filename = os.path.basename(wav_path)
        result = (
            CLASSES[pred_id].capitalize()
            if EN_US
            else f"{TRANSLATE[CLASSES[pred_id]]} ({CLASSES[pred_id].capitalize()})"
        )

    except Exception as e:
        status = f"{e}"

    return status, filename, result


if __name__ == "__main__":
    warnings.filterwarnings("ignore")
    models = get_modelist(assign_model="vit_l_16_cqt")
    examples = []
    example_audios = find_audio_files()
    for audio in example_audios:
        examples.append([audio, models[0]])

    with gr.Blocks() as demo:
        gr.Interface(
            fn=infer,
            inputs=[
                gr.Audio(label=_L("上传录音"), type="filepath"),
                gr.Dropdown(choices=models, label=_L("选择模型"), value=models[0]),
            ],
            outputs=[
                gr.Textbox(label=_L("状态栏"), show_copy_button=True),
                gr.Textbox(label=_L("音频文件名"), show_copy_button=True),
                gr.Textbox(
                    label=_L("中国五声调式识别"),
                    show_copy_button=True,
                ),
            ],
            examples=examples,
            cache_examples=False,
            flagging_mode="never",
            title=_L("建议录音时长保持在 20s 左右"),
        )

        gr.Markdown(
            f"# {_L('引用')}"
            + """
            ```bibtex
            @article{Zhou-2025,
                author  = {Monan Zhou and Shenyang Xu and Zhaorui Liu and Zhaowen Wang and Feng Yu and Wei Li and Baoqiang Han},
                title   = {CCMusic: An Open and Diverse Database for Chinese Music Information Retrieval Research},
                journal = {Transactions of the International Society for Music Information Retrieval},
                volume  = {8},
                number  = {1},
                pages   = {22--38},
                month   = {Mar},
                year    = {2025},
                url     = {https://doi.org/10.5334/tismir.194},
                doi     = {10.5334/tismir.194}
            }
            ```"""
        )

    demo.launch()