import os import torch import shutil import librosa import warnings import numpy as np import gradio as gr import librosa.display import matplotlib.pyplot as plt from model import EvalNet from utils import ( get_modelist, find_audio_files, embed_img, _L, SAMPLE_RATE, TEMP_DIR, TRANSLATE, CLASSES, EN_US, ) def zero_padding(y: np.ndarray, end: int): size = len(y) if size < end: return np.concatenate((y, np.zeros(end - size))) elif size > end: return y[-end:] return y def audio2mel(audio_path: str, seg_len=20): y, sr = librosa.load(audio_path, sr=SAMPLE_RATE) y = zero_padding(y, seg_len * sr) mel_spec = librosa.feature.melspectrogram(y=y, sr=sr) log_mel_spec = librosa.power_to_db(mel_spec, ref=np.max) librosa.display.specshow(log_mel_spec) plt.axis("off") plt.savefig( f"{TEMP_DIR}/output.jpg", bbox_inches="tight", pad_inches=0.0, ) plt.close() def audio2cqt(audio_path: str, seg_len=20): y, sr = librosa.load(audio_path, sr=SAMPLE_RATE) y = zero_padding(y, seg_len * sr) cqt_spec = librosa.cqt(y=y, sr=sr) log_cqt_spec = librosa.power_to_db(np.abs(cqt_spec) ** 2, ref=np.max) librosa.display.specshow(log_cqt_spec) plt.axis("off") plt.savefig( f"{TEMP_DIR}/output.jpg", bbox_inches="tight", pad_inches=0.0, ) plt.close() def audio2chroma(audio_path: str, seg_len=20): y, sr = librosa.load(audio_path, sr=SAMPLE_RATE) y = zero_padding(y, seg_len * sr) chroma_spec = librosa.feature.chroma_stft(y=y, sr=sr) log_chroma_spec = librosa.power_to_db(np.abs(chroma_spec) ** 2, ref=np.max) librosa.display.specshow(log_chroma_spec) plt.axis("off") plt.savefig( f"{TEMP_DIR}/output.jpg", bbox_inches="tight", pad_inches=0.0, ) plt.close() def infer(wav_path: str, log_name: str, folder_path=TEMP_DIR): status = "Success" filename = result = None try: if os.path.exists(folder_path): shutil.rmtree(folder_path) if not wav_path: raise ValueError("请输入音频!") spec = log_name.split("_")[-3] os.makedirs(folder_path, exist_ok=True) model = EvalNet(log_name, len(TRANSLATE)).model eval("audio2%s" % spec)(wav_path) input = embed_img(f"{folder_path}/output.jpg") output: torch.Tensor = model(input) pred_id = torch.max(output.data, 1)[1] filename = os.path.basename(wav_path) result = ( CLASSES[pred_id].capitalize() if EN_US else f"{TRANSLATE[CLASSES[pred_id]]} ({CLASSES[pred_id].capitalize()})" ) except Exception as e: status = f"{e}" return status, filename, result if __name__ == "__main__": warnings.filterwarnings("ignore") models = get_modelist(assign_model="vit_l_16_cqt") examples = [] example_audios = find_audio_files() for audio in example_audios: examples.append([audio, models[0]]) with gr.Blocks() as demo: gr.Interface( fn=infer, inputs=[ gr.Audio(label=_L("上传录音"), type="filepath"), gr.Dropdown(choices=models, label=_L("选择模型"), value=models[0]), ], outputs=[ gr.Textbox(label=_L("状态栏"), show_copy_button=True), gr.Textbox(label=_L("音频文件名"), show_copy_button=True), gr.Textbox( label=_L("中国五声调式识别"), show_copy_button=True, ), ], examples=examples, cache_examples=False, flagging_mode="never", title=_L("建议录音时长保持在 20s 左右"), ) gr.Markdown( f"# {_L('引用')}" + """ ```bibtex @article{Zhou-2025, author = {Monan Zhou and Shenyang Xu and Zhaorui Liu and Zhaowen Wang and Feng Yu and Wei Li and Baoqiang Han}, title = {CCMusic: An Open and Diverse Database for Chinese Music Information Retrieval Research}, journal = {Transactions of the International Society for Music Information Retrieval}, volume = {8}, number = {1}, pages = {22--38}, month = {Mar}, year = {2025}, url = {https://doi.org/10.5334/tismir.194}, doi = {10.5334/tismir.194} } ```""" ) demo.launch()