Spaces:
Running
Running
File size: 5,182 Bytes
14e7761 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
import os
import torch
import random
import shutil
import librosa
import warnings
import numpy as np
import gradio as gr
import librosa.display
import matplotlib.pyplot as plt
from utils import get_modelist, find_wav_files, embed_img, TEMP_DIR
from model import EvalNet
TRANSLATE = {
"vibrato": "揉弦 Rou xian",
"trill": "颤音 Chan yin",
"tremolo": "颤弓 Chan gong",
"staccato": "顿弓 Dun gong",
"ricochet": "抛弓 Pao gong",
"pizzicato": "拨弦 Bo xian",
"percussive": "击弓 Ji gong",
"legato_slide_glissando": "连滑音 Lian hua yin",
"harmonic": "泛音 Fan yin",
"diangong": "垫弓 Dian gong",
"detache": "分弓 Fen gong",
}
CLASSES = list(TRANSLATE.keys())
SAMPLE_RATE = 44100
def circular_padding(y: np.ndarray, sr: int, dur=3):
if len(y) >= sr * dur:
return y[: sr * dur]
size = sr * dur // len(y) + int((sr * dur) % len(y) > 0)
arrays = []
for _ in range(size):
arrays.append(y)
y = np.hstack(arrays)
return y[: sr * dur]
def wav2mel(audio_path: str):
os.makedirs(TEMP_DIR, exist_ok=True)
try:
y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
y = circular_padding(y, sr)
mel_spec = librosa.feature.melspectrogram(y=y, sr=sr)
log_mel_spec = librosa.power_to_db(mel_spec, ref=np.max)
librosa.display.specshow(log_mel_spec)
plt.axis("off")
plt.savefig(
f"{TEMP_DIR}/output.jpg",
bbox_inches="tight",
pad_inches=0.0,
)
plt.close()
except Exception as e:
print(f"Error converting {audio_path} : {e}")
def wav2cqt(audio_path: str):
os.makedirs(TEMP_DIR, exist_ok=True)
try:
y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
y = circular_padding(y, sr)
cqt_spec = librosa.cqt(y=y, sr=sr)
log_cqt_spec = librosa.power_to_db(np.abs(cqt_spec) ** 2, ref=np.max)
librosa.display.specshow(log_cqt_spec)
plt.axis("off")
plt.savefig(
f"{TEMP_DIR}/output.jpg",
bbox_inches="tight",
pad_inches=0.0,
)
plt.close()
except Exception as e:
print(f"Error converting {audio_path} : {e}")
def wav2chroma(audio_path: str):
os.makedirs(TEMP_DIR, exist_ok=True)
try:
y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
y = circular_padding(y, sr)
chroma_spec = librosa.feature.chroma_stft(y=y, sr=sr)
log_chroma_spec = librosa.power_to_db(np.abs(chroma_spec) ** 2, ref=np.max)
librosa.display.specshow(log_chroma_spec)
plt.axis("off")
plt.savefig(
f"{TEMP_DIR}/output.jpg",
bbox_inches="tight",
pad_inches=0.0,
)
plt.close()
except Exception as e:
print(f"Error converting {audio_path} : {e}")
def infer(wav_path: str, log_name: str, folder_path=TEMP_DIR):
if os.path.exists(folder_path):
shutil.rmtree(folder_path)
if not wav_path:
return None, "请输入音频 Please input an audio!"
try:
model = EvalNet(log_name, len(TRANSLATE)).model
except Exception as e:
return None, f"{e}"
spec = log_name.split("_")[-3]
eval("wav2%s" % spec)(wav_path)
input = embed_img(f"{folder_path}/output.jpg")
output: torch.Tensor = model(input)
pred_id = torch.max(output.data, 1)[1]
return (
os.path.basename(wav_path),
f"{TRANSLATE[CLASSES[pred_id]]} ({CLASSES[pred_id].capitalize()})",
)
if __name__ == "__main__":
warnings.filterwarnings("ignore")
models = get_modelist()
examples = []
example_wavs = find_wav_files()
model_num = len(models)
for wav in example_wavs:
examples.append([wav, models[random.randint(0, model_num - 1)]])
with gr.Blocks() as demo:
gr.Interface(
fn=infer,
inputs=[
gr.Audio(label="上传录音 Upload a recording", type="filepath"),
gr.Dropdown(
choices=models, label="选择模型 Select a model", value=models[0]
),
],
outputs=[
gr.Textbox(label="音频文件名 Audio filename", show_copy_button=True),
gr.Textbox(
label="演奏技法识别 Playing tech recognition", show_copy_button=True
),
],
examples=examples,
cache_examples=False,
allow_flagging="never",
title="建议录音时长保持在 3s 左右<br>It is recommended to keep the recording length around 3s.",
)
gr.Markdown(
"""
# 引用 Cite
```bibtex
@dataset{zhaorui_liu_2021_5676893,
author = {Monan Zhou, Shenyang Xu, Zhaorui Liu, Zhaowen Wang, Feng Yu, Wei Li and Baoqiang Han},
title = {CCMusic: an Open and Diverse Database for Chinese and General Music Information Retrieval Research},
month = {mar},
year = {2024},
publisher = {HuggingFace},
version = {1.2},
url = {https://huggingface.co/ccmusic-database}
}
```"""
)
demo.launch()
|