Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -7,24 +7,43 @@ from ultralytics import YOLO
|
|
7 |
# Load the YOLOv8 model
|
8 |
model = YOLO('best.pt')
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
def detect_objects(image):
|
11 |
# Convert the input image to a format YOLO can work with
|
12 |
image = np.array(image)
|
13 |
|
14 |
# Perform detection
|
15 |
-
results = model(image
|
16 |
|
17 |
# Draw bounding boxes on the image
|
18 |
for box in results.boxes.data.cpu().numpy():
|
19 |
x1, y1, x2, y2, score, class_id = box
|
20 |
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
|
21 |
|
22 |
-
#
|
23 |
-
|
|
|
|
|
|
|
24 |
|
25 |
# Put the class name above the bounding box
|
26 |
class_name = model.model.names[int(class_id)]
|
27 |
-
cv2.putText(image, f'{class_name} {score:.2f}', (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5,
|
28 |
|
29 |
# Convert back to PIL image
|
30 |
return Image.fromarray(image)
|
|
|
7 |
# Load the YOLOv8 model
|
8 |
model = YOLO('best.pt')
|
9 |
|
10 |
+
# Define a list of colors for different classes
|
11 |
+
colors = [
|
12 |
+
(255, 0, 0), # Red
|
13 |
+
(0, 255, 0), # Green
|
14 |
+
(0, 0, 255), # Blue
|
15 |
+
(255, 255, 0), # Cyan
|
16 |
+
(255, 0, 255), # Magenta
|
17 |
+
(0, 255, 255), # Yellow
|
18 |
+
(128, 0, 0), # Maroon
|
19 |
+
(0, 128, 0), # Olive
|
20 |
+
(128, 128, 0), # Teal
|
21 |
+
(0, 0, 128), # Navy
|
22 |
+
(128, 0, 128), # Purple
|
23 |
+
(0, 128, 128) # Aqua
|
24 |
+
]
|
25 |
+
|
26 |
def detect_objects(image):
|
27 |
# Convert the input image to a format YOLO can work with
|
28 |
image = np.array(image)
|
29 |
|
30 |
# Perform detection
|
31 |
+
results = model(image)[0]
|
32 |
|
33 |
# Draw bounding boxes on the image
|
34 |
for box in results.boxes.data.cpu().numpy():
|
35 |
x1, y1, x2, y2, score, class_id = box
|
36 |
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
|
37 |
|
38 |
+
# Select color for the class id
|
39 |
+
color = colors[int(class_id) % len(colors)]
|
40 |
+
|
41 |
+
# Draw the bounding box with a thinner line
|
42 |
+
cv2.rectangle(image, (x1, y1), (x2, y2), color, 1) # Line width set to 1
|
43 |
|
44 |
# Put the class name above the bounding box
|
45 |
class_name = model.model.names[int(class_id)]
|
46 |
+
cv2.putText(image, f'{class_name} {score:.2f}', (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 1)
|
47 |
|
48 |
# Convert back to PIL image
|
49 |
return Image.fromarray(image)
|