import gradio as gr from PIL import Image import numpy as np import cv2 from ultralytics import YOLO # Load the YOLOv8 model model = YOLO('best.pt') # Define a list of colors for the 6 classes colors = [ (255, 0, 0), # Red (0, 255, 0), # Green (0, 0, 255), # Blue (255, 255, 0), # Cyan (255, 0, 255), # Magenta (0, 255, 255) # Yellow ] def detect_objects(image): # Resize the input image to 200x200 pixels image = image.resize((200, 200)) # Convert the input image to a format YOLO can work with image = np.array(image) # Perform detection results = model(image)[0] # Draw bounding boxes on the image for box in results.boxes.data.cpu().numpy(): x1, y1, x2, y2, score, class_id = box x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2) # Select color for the class id color = colors[int(class_id) % len(colors)] # Draw the bounding box with a thinner line cv2.rectangle(image, (x1, y1), (x2, y2), color, 1) # Line width set to 1 # Put the class name above the bounding box with smaller font class_name = model.model.names[int(class_id)] cv2.putText(image, f'{class_name} {score:.2f}', (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.4, color, 1) # Convert back to PIL image return Image.fromarray(image) # Define the Gradio interface interface = gr.Interface( fn=detect_objects, inputs=gr.Image(type="pil"), outputs=gr.Image(type="pil"), title="YOLOv8 Object Detection", description="Upload an image and YOLOv8 will detect objects in the image." ) # Launch the interface interface.launch()