File size: 7,002 Bytes
9f4c52d
 
 
 
 
 
 
 
 
 
 
867f539
 
 
 
 
 
 
9f4c52d
 
867f539
 
 
 
9f4c52d
 
867f539
 
 
9f4c52d
 
867f539
 
 
9f4c52d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
867f539
9f4c52d
 
 
 
 
 
 
867f539
9f4c52d
867f539
9f4c52d
 
 
 
 
 
 
 
 
 
867f539
6dbb7a6
9f4c52d
 
 
 
6dbb7a6
867f539
 
9f4c52d
247b8a5
867f539
 
 
 
 
 
247b8a5
9f4c52d
 
 
 
 
 
6e290b7
 
9f4c52d
 
6e290b7
9f4c52d
 
867f539
 
 
6e290b7
6dbb7a6
 
 
 
 
9f4c52d
6dbb7a6
 
 
 
867f539
6dbb7a6
 
 
 
 
 
 
 
 
 
 
 
 
9f4c52d
 
6e290b7
6dbb7a6
 
 
 
867f539
6e290b7
6dbb7a6
 
a98d628
6dbb7a6
 
 
 
 
 
 
 
 
 
 
4d840a0
6dbb7a6
6e290b7
6dbb7a6
 
 
 
 
 
 
4d840a0
6e290b7
4d840a0
9f4c52d
6e290b7
4d840a0
9f4c52d
6dbb7a6
 
 
 
 
 
 
 
 
 
6e290b7
 
6dbb7a6
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import streamlit as st
from streamlit.runtime.uploaded_file_manager import UploadedFile
import numpy as np
from pose_format import Pose
from pose_format.pose_visualizer import PoseVisualizer
from pathlib import Path
from pyzstd import decompress
from PIL import Image
import mediapipe as mp

mp_holistic = mp.solutions.holistic
FACEMESH_CONTOURS_POINTS = [
    str(p)
    for p in sorted(
        set([p for p_tup in list(mp_holistic.FACEMESH_CONTOURS) for p in p_tup])
    )
]

def pose_normalization_info(pose_header):
    if pose_header.components[0].name == "POSE_LANDMARKS":
        return pose_header.normalization_info(
            p1=("POSE_LANDMARKS", "RIGHT_SHOULDER"),
            p2=("POSE_LANDMARKS", "LEFT_SHOULDER"),
        )

    if pose_header.components[0].name == "BODY_135":
        return pose_header.normalization_info(
            p1=("BODY_135", "RShoulder"), p2=("BODY_135", "LShoulder")
        )

    if pose_header.components[0].name == "pose_keypoints_2d":
        return pose_header.normalization_info(
            p1=("pose_keypoints_2d", "RShoulder"), p2=("pose_keypoints_2d", "LShoulder")
        )


def pose_hide_legs(pose):
    if pose.header.components[0].name == "POSE_LANDMARKS":
        point_names = ["KNEE", "ANKLE", "HEEL", "FOOT_INDEX"]
        # pylint: disable=protected-access
        points = [
            pose.header._get_point_index("POSE_LANDMARKS", side + "_" + n)
            for n in point_names
            for side in ["LEFT", "RIGHT"]
        ]
        pose.body.confidence[:, :, points] = 0
        pose.body.data[:, :, points, :] = 0
        return pose
    else:
        raise ValueError("Unknown pose header schema for hiding legs")


# @st.cache_data(hash_funcs={UploadedFile: lambda p: str(p.name)})
def load_pose(uploaded_file: UploadedFile) -> Pose:

    # with input_path.open("rb") as f_in:
    if uploaded_file.name.endswith(".zst"):
        return Pose.read(decompress(uploaded_file.read()))
    else:
        return Pose.read(uploaded_file.read())


@st.cache_data(hash_funcs={Pose: lambda p: np.array(p.body.data)})
def get_pose_frames(pose: Pose, transparency: bool = False):
    v = PoseVisualizer(pose)
    frames = [frame_data for frame_data in v.draw()]

    if transparency:
        cv_code = v.cv2.COLOR_BGR2RGBA
    else:
        cv_code = v.cv2.COLOR_BGR2RGB
    images = [Image.fromarray(v.cv2.cvtColor(frame, cv_code)) for frame in frames]
    return frames, images


def get_pose_gif(pose: Pose, step: int = 1, start_frame:int=None, end_frame:int=None, fps: int = None):
    if fps is not None:
        pose.body.fps = fps
    v = PoseVisualizer(pose)
    frames = [frame_data for frame_data in v.draw()]
    frames = frames[start_frame:end_frame:step]
    return v.save_gif(None, frames=frames)


st.write("# Pose-format explorer")
st.write(
    "`pose-format` is a toolkit/library for 'handling, manipulation, and visualization of poses'. See [The documentation](https://pose-format.readthedocs.io/en/latest/)"
)
st.write(
    "I made this app to help me visualize and understand the format, including different 'components' and 'points', and what they are named."
)
uploaded_file = st.file_uploader("Upload a .pose file", type=[".pose", ".pose.zst"])


if uploaded_file is not None:
    with st.spinner(f"Loading {uploaded_file.name}"):
        pose = load_pose(uploaded_file)
        frames, images = get_pose_frames(pose=pose)
    st.success("Done loading!")
    
    st.write("### File Info")
    with st.expander(f"Show full Pose-format header from {uploaded_file.name}"):
        st.write(pose.header)

    st.write(f"### Selection")
    component_selection = st.radio(
        "How to select components?", options=["manual", "signclip"]
    )

    component_names = [c.name for c in pose.header.components]
    chosen_component_names = []
    points_dict = {}
    hide_legs = False

    if component_selection == "manual":
        

        chosen_component_names = st.pills(
            "Select components to visualize", options=component_names, default=component_names,selection_mode="multi"
        )
        
        for component in pose.header.components:
            if component.name in chosen_component_names:
                with st.expander(f"Points for {component.name}"):
                    selected_points = st.multiselect(
                        f"Select points for component {component.name}:",
                        options=component.points,
                        default=component.points,
                    )
                    if selected_points != component.points:  # Only add entry if not all points are selected
                        points_dict[component.name] = selected_points
        


    elif component_selection == "signclip":
        st.write("Selected landmarks used for SignCLIP.")
        chosen_component_names = ["POSE_LANDMARKS", "FACE_LANDMARKS", "LEFT_HAND_LANDMARKS", "RIGHT_HAND_LANDMARKS"]
        points_dict = {"FACE_LANDMARKS": FACEMESH_CONTOURS_POINTS}
        


    # Filter button logic
        # Filter section
    st.write("### Filter .pose File")
    filtered = st.button("Apply Filter!")
    if filtered:
        pose = pose.get_components(chosen_component_names, points=points_dict if points_dict else None)
        if hide_legs:
            pose = pose_hide_legs(pose)
        st.session_state.filtered_pose = pose

    filtered_pose = st.session_state.get('filtered_pose', pose)
    if filtered_pose:
        filtered_pose = st.session_state.get('filtered_pose', pose)
        st.write(f"#### Filtered .pose file")
        st.write(f"Pose data shape: {filtered_pose.body.data.shape}")
        with st.expander("Show header"):
            st.write(filtered_pose.header)
        with st.expander("Show body"):
            st.write(filtered_pose.body)
        # with st.expander("Show data:"):
        #     for frame in filtered_pose.body.data:
        #         st.write(f"Frame:{frame}")
        #         for person in frame:
        #             st.write(person)

        pose_file_out = Path(uploaded_file.name).with_suffix(".pose")
        with pose_file_out.open("wb") as f:
            pose.write(f)

        with pose_file_out.open("rb") as f:
            st.download_button("Download Filtered Pose", f, file_name=pose_file_out.name)

    
    st.write("### Visualization")
    step = st.select_slider("Step value to select every nth image", list(range(1, len(frames))), value=1)
    fps = st.slider("FPS for visualization", min_value=1.0, max_value=filtered_pose.body.fps, value=filtered_pose.body.fps)
    start_frame, end_frame = st.slider(
        "Select Frame Range",
        0,
        len(frames),
        (0, len(frames)),  # Default range
    )
    # Visualization button logic
    if st.button("Visualize"):
        # Load filtered pose if it exists; otherwise, use the unfiltered pose
        
        
        st.image(get_pose_gif(pose=filtered_pose, step=step, start_frame=start_frame, end_frame=end_frame, fps=fps))