File size: 12,702 Bytes
84dfc7c
 
 
 
9f4c52d
 
 
 
84dfc7c
9f4c52d
 
 
 
 
 
867f539
 
 
 
 
 
84dfc7c
867f539
84dfc7c
 
 
 
9f4c52d
84dfc7c
 
 
 
 
 
 
 
 
 
867f539
9f4c52d
84dfc7c
 
9f4c52d
84dfc7c
 
 
9f4c52d
84dfc7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f4c52d
 
 
867f539
9f4c52d
 
 
 
 
 
 
867f539
84dfc7c
867f539
9f4c52d
 
 
 
 
 
 
 
 
 
867f539
84dfc7c
 
 
 
 
 
 
9f4c52d
 
 
 
6dbb7a6
867f539
 
9f4c52d
247b8a5
867f539
 
 
 
 
 
84dfc7c
77d65a9
 
 
 
 
 
84dfc7c
247b8a5
9f4c52d
 
 
 
 
84dfc7c
9f4c52d
6e290b7
84dfc7c
9f4c52d
 
6e290b7
9f4c52d
 
867f539
84dfc7c
867f539
6e290b7
6dbb7a6
 
 
84dfc7c
6dbb7a6
9f4c52d
6dbb7a6
 
84dfc7c
 
 
 
867f539
84dfc7c
6dbb7a6
 
 
 
 
 
 
 
84dfc7c
 
 
6dbb7a6
9f4c52d
 
61f1b91
84dfc7c
 
 
 
 
 
6dbb7a6
 
77ef1b5
 
 
84dfc7c
61f1b91
84dfc7c
 
 
 
 
 
 
 
 
e064361
84dfc7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
867f539
e064361
 
 
 
 
 
 
 
 
 
77ef1b5
e064361
 
6e290b7
84dfc7c
6dbb7a6
a98d628
6dbb7a6
84dfc7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6dbb7a6
 
84dfc7c
6dbb7a6
84dfc7c
 
6dbb7a6
4d840a0
6dbb7a6
6e290b7
6dbb7a6
 
 
 
 
 
 
4d840a0
6e290b7
4d840a0
9f4c52d
6e290b7
84dfc7c
 
 
9f4c52d
6dbb7a6
84dfc7c
 
 
 
 
 
 
 
 
6dbb7a6
 
 
 
 
 
6e290b7
 
6dbb7a6
84dfc7c
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
from pathlib import Path
import json
from typing import Dict, Optional, List, Tuple
from collections import defaultdict
import streamlit as st
from streamlit.runtime.uploaded_file_manager import UploadedFile
import numpy as np
from pose_format import Pose
from pose_format.utils.generic import pose_hide_legs, reduce_holistic
from pose_format.pose_visualizer import PoseVisualizer
from pyzstd import decompress
from PIL import Image
import mediapipe as mp

mp_holistic = mp.solutions.holistic
FACEMESH_CONTOURS_POINTS = [
    str(p)
    for p in sorted(
        set([p for p_tup in list(mp_holistic.FACEMESH_CONTOURS) for p in p_tup])
    )
]
COMPONENT_SELECTION_METHODS = ["manual", "signclip", "youtube-asl", "reduce_holistic"]

def download_json(data):
    json_data = json.dumps(data)
    json_bytes = json_data.encode('utf-8')
    return json_bytes

def get_points_dict_and_components_with_index_list(
    pose: Pose, landmark_indices: List[int], components_to_include: Optional[List[str]]
) -> Tuple[List[str], Dict[str, List[str]]]:
    """Used to get components/points if you only have a list of indices, 
    e.g. listed in a research paper like YouTube-ASL.
    If you want to also explicitly specify component names, you can.
    So for example, to get the two hands and the nose you could do the following:
    c_names, points_dict = get_points_dict_and_components_with_index_list(pose,
        landmark_indices=[0] # which is "NOSE" within POSE_LANDMARKS components
        components_to_include=["LEFT_HAND_LANDMARKS", "RIGHT_HAND_LANDMARKS]
        )

    then you can just use get_components
    filtered_pose = pose.get_components(c_names, points_dict)

    """
    components_to_get = []
    points_dict = defaultdict(list)

    for c in pose.header.components:
        for point_name in c.points:
            point_index = pose.header.get_point_index(c.name, point_name)
            if point_index in landmark_indices:
                components_to_get.append(c.name)
                points_dict[c.name].append(point_name)
                # print(f"Point with index {point_index} has name {c.name}:{point_name}")

    if components_to_include:
        components_to_get.extend(components_to_include)
    components_to_get = list(set(components_to_get))
    # print("*********************")
    # print(components_to_get)
    # print(points_dict)
    return components_to_get, points_dict


# @st.cache_data(hash_funcs={UploadedFile: lambda p: str(p.name)})
def load_pose(uploaded_file: UploadedFile) -> Pose:

    # with input_path.open("rb") as f_in:
    if uploaded_file.name.endswith(".zst"):
        return Pose.read(decompress(uploaded_file.read()))
    else:
        return Pose.read(uploaded_file.read())


@st.cache_data(hash_funcs={Pose: lambda p: np.asarray(p.body.data.data)})
def get_pose_frames(pose: Pose, transparency: bool = False):
    v = PoseVisualizer(pose)
    frames = [frame_data for frame_data in v.draw()]

    if transparency:
        cv_code = v.cv2.COLOR_BGR2RGBA
    else:
        cv_code = v.cv2.COLOR_BGR2RGB
    images = [Image.fromarray(v.cv2.cvtColor(frame, cv_code)) for frame in frames]
    return frames, images


def get_pose_gif(
    pose: Pose,
    step: int = 1,
    start_frame: Optional[int] = None,
    end_frame: Optional[int] = None,
    fps: Optional[float] = None,
):
    if fps is not None:
        pose.body.fps = fps
    v = PoseVisualizer(pose)
    frames = [frame_data for frame_data in v.draw()]
    frames = frames[start_frame:end_frame:step]
    return v.save_gif(None, frames=frames)


st.write("# Pose-format explorer")
st.write(
    "`pose-format` is a toolkit/library for 'handling, manipulation, and visualization of poses'. See [The documentation](https://pose-format.readthedocs.io/en/latest/)"
)
st.write(
    "I made this app to help me visualize and understand the format, including different 'components' and 'points', and what they are named."
)
st.write(
    "If you need a .pose file, here's a few:"
)
st.write("* One of [me doing a self-introduction](https://drive.google.com/file/d/1_L5sYVhONDBABuTmQUvjsl94LbFqzEyP/view?usp=sharing)")
st.write("* One of [me signing ASL 'HOUSE'](https://drive.google.com/file/d/1uggYqLyTA4XdDWaWsS9w5hKaPwW86IF_/view?usp=sharing)")
st.write(
    "* ... or [the same file, but with the 10 extra landmarks](https://drive.google.com/file/d/1XHkfn24PIas1a3XUUXYXTX2DvYeUDuCI/view?usp=drive_link) from mediapipe holistic's [`refine_face_landmarks` option](https://github.com/sign-language-processing/pose/?tab=readme-ov-file#2-estimating-pose-from-video)"
)
uploaded_file = st.file_uploader("Upload a .pose file", type=[".pose", ".pose.zst"])


if uploaded_file is not None:
    with st.spinner(f"Loading {uploaded_file.name}"):
        pose = load_pose(uploaded_file)
        # st.write(pose.body.data.shape)
        frames, images = get_pose_frames(pose=pose)
    st.success("Done loading!")

    st.write("### File Info")
    with st.expander(f"Show full Pose-format header from {uploaded_file.name}"):
        st.write(pose.header)

    st.write(f"### Selection")
    component_selection = st.radio(
        "How to select components?", options=COMPONENT_SELECTION_METHODS
    )

    component_names = [c.name for c in pose.header.components]
    chosen_component_names = []
    points_dict = {}
    HIDE_LEGS = False

    if component_selection == "manual":

        chosen_component_names = st.pills(
            "Select components to visualize",
            options=component_names,
            default=component_names,
            selection_mode="multi",
        )

        for component in pose.header.components:
            if component.name in chosen_component_names:
                with st.expander(f"Points for {component.name}"):
                    selected_points = st.multiselect(
                        f"Select points for component {component.name}:",
                        options=component.points,
                        default=component.points,
                    )
                    if (
                        selected_points != component.points
                    ):  # Only add entry if not all points are selected
                        points_dict[component.name] = selected_points

    elif component_selection == "signclip":
        st.write("Selected landmarks used for [SignCLIP](https://arxiv.org/abs/2407.01264).")
        chosen_component_names = [
            "POSE_LANDMARKS",
            "FACE_LANDMARKS",
            "LEFT_HAND_LANDMARKS",
            "RIGHT_HAND_LANDMARKS",
        ]
        points_dict = {"FACE_LANDMARKS": FACEMESH_CONTOURS_POINTS}

    elif component_selection == "reduce_holistic":
        st.write("Using [pose_format.utils.generic.reduce_holistic](https://github.com/sign-language-processing/pose/blob/master/src/python/pose_format/utils/generic.py#L286)")
        
    elif component_selection == "youtube-asl":
        st.write("Selected landmarks used for [YouTube-ASL](https://arxiv.org/pdf/2306.15162).")
        # https://arxiv.org/pdf/2306.15162
        # For each hand, we use all 21 landmark points.
        # Colin: So that's
        # For the pose, we use 6 landmark points, for the shoulders, elbows and hips
        # These are indices 11, 12, 13, 14, 23, 24
        # For the face, we use 37 landmark points, from the eyes, eyebrows, lips, and face outline.
        # These are indices 0, 4, 13, 14, 17, 33, 37, 39, 46, 52, 55, 61, 64, 81, 82, 93, 133, 151, 152, 159, 172, 178,
        # 181, 263, 269, 276, 282, 285, 291, 294, 311, 323, 362, 386, 397, 468, 473.
        # Colin: note that these are with refine_face_landmarks on, and are relative to the component itself. Working it all out the result is:
        chosen_component_names=['POSE_LANDMARKS', 'FACE_LANDMARKS', 'LEFT_HAND_LANDMARKS', 'RIGHT_HAND_LANDMARKS']
        points_dict={
            "POSE_LANDMARKS": [
                "LEFT_SHOULDER",
                "RIGHT_SHOULDER",
                "LEFT_HIP",
                "RIGHT_HIP",
                "LEFT_ELBOW",
                "RIGHT_ELBOW"
            ],
            "FACE_LANDMARKS": [
                "0",
                "4",
                "13",
                "14",
                "17",
                "33",
                "37",
                "39",
                "46",
                "52",
                "55",
                "61",
                "64",
                "81",
                "82",
                "93",
                "133",
                "151",
                "152",
                "159",
                "172",
                "178",
                "181",
                "263",
                "269",
                "276",
                "282",
                "285",
                "291",
                "294",
                "311",
                "323",
                "362",
                "386",
                "397",
            ]
        }

        # check if we have the extra points from refine_face_landmarks
        additional_face_points = ["468", "473"]
        for additional_point in additional_face_points:
            try:
                point_index = pose.header.get_point_index("FACE_LANDMARKS", additional_point)
                points_dict['FACE_LANDMARKS'].append(additional_point)
            except ValueError:
                # not in the list
                # st.write(f"Point {additional_point} not in file")
                pass
                


    # Filter button logic
    # Filter section
    st.write("### Filter .pose File")
    filtered = st.button("Apply Filter!")
    if filtered:
        st.write(f"Filtering strategy: {component_selection}")

        if component_selection == "reduce_holistic":
            # st.write(f"reduce_holistic:")
            pose = reduce_holistic(pose)
            st.write("Used pose_format.reduce_holistic")
        else:
            pose = pose.get_components(components=chosen_component_names, points=points_dict if points_dict else None
            )
            with st.expander("Show component list and points dict used for get_components"):
                st.write("##### Component names")
                st.write(chosen_component_names)
                st.write("##### Points dict")
                st.write(points_dict)

            with st.expander("How to replicate in pose-format"):
                st.write("##### Usage:")
                st.write("How to achieve the same result with pose-format library")
                # points_dict_str = json.dumps(points_dict, indent=4)
                usage_string = f"components={chosen_component_names}\npoints_dict={points_dict}\npose = pose.get_components(components=components, points=points_dict)"
                st.code(usage_string)

        if HIDE_LEGS:
            pose = pose_hide_legs(pose, remove=True)
        st.session_state.filtered_pose = pose

    filtered_pose = st.session_state.get("filtered_pose", pose)
    if filtered_pose:
        filtered_pose = st.session_state.get("filtered_pose", pose)
        st.write("#### Filtered .pose file")
        st.write(f"Pose data shape: {filtered_pose.body.data.shape}")
        with st.expander("Show header"):
            st.write(filtered_pose.header)
        with st.expander("Show body"):
            st.write(filtered_pose.body)
        # with st.expander("Show data:"):
        #     for frame in filtered_pose.body.data:
        #         st.write(f"Frame:{frame}")
        #         for person in frame:
        #             st.write(person)

        pose_file_out = Path(uploaded_file.name).with_suffix(".pose")
        with pose_file_out.open("wb") as f:
            pose.write(f)

        with pose_file_out.open("rb") as f:
            st.download_button(
                "Download Filtered Pose", f, file_name=pose_file_out.name
            )

    st.write("### Visualization")
    step = st.select_slider(
        "Step value to select every nth image", list(range(1, len(frames))), value=1
    )
    fps = st.slider(
        "FPS for visualization",
        min_value=1.0,
        max_value=filtered_pose.body.fps,
        value=filtered_pose.body.fps,
    )
    start_frame, end_frame = st.slider(
        "Select Frame Range",
        0,
        len(frames),
        (0, len(frames)),  # Default range
    )
    # Visualization button logic
    if st.button("Visualize"):
        # Load filtered pose if it exists; otherwise, use the unfiltered pose

        pose_bytes = get_pose_gif(
            pose=filtered_pose,
            step=step,
            start_frame=start_frame,
            end_frame=end_frame,
            fps=fps,
        )
        if pose_bytes is not None:
            st.image(pose_bytes)