Colin Leong
CDL: copying files over
9f4c52d
raw
history blame
8.02 kB
import streamlit as st
from streamlit.runtime.uploaded_file_manager import UploadedFile
import pandas as pd
import numpy as np
from pose_format import Pose
from pose_format.pose_visualizer import PoseVisualizer
from pathlib import Path
from pyzstd import decompress
from PIL import Image
import cv2
import mediapipe as mp
import torch
mp_holistic = mp.solutions.holistic
FACEMESH_CONTOURS_POINTS = [str(p) for p in sorted(set([p for p_tup in list(mp_holistic.FACEMESH_CONTOURS) for p in p_tup]))]
def pose_normalization_info(pose_header):
if pose_header.components[0].name == "POSE_LANDMARKS":
return pose_header.normalization_info(p1=("POSE_LANDMARKS", "RIGHT_SHOULDER"),
p2=("POSE_LANDMARKS", "LEFT_SHOULDER"))
if pose_header.components[0].name == "BODY_135":
return pose_header.normalization_info(p1=("BODY_135", "RShoulder"), p2=("BODY_135", "LShoulder"))
if pose_header.components[0].name == "pose_keypoints_2d":
return pose_header.normalization_info(p1=("pose_keypoints_2d", "RShoulder"),
p2=("pose_keypoints_2d", "LShoulder"))
def pose_hide_legs(pose):
if pose.header.components[0].name == "POSE_LANDMARKS":
point_names = ["KNEE", "ANKLE", "HEEL", "FOOT_INDEX"]
# pylint: disable=protected-access
points = [
pose.header._get_point_index("POSE_LANDMARKS", side + "_" + n)
for n in point_names
for side in ["LEFT", "RIGHT"]
]
pose.body.confidence[:, :, points] = 0
pose.body.data[:, :, points, :] = 0
return pose
else:
raise ValueError("Unknown pose header schema for hiding legs")
def preprocess_pose(pose):
pose = pose.get_components(["POSE_LANDMARKS", "FACE_LANDMARKS", "LEFT_HAND_LANDMARKS", "RIGHT_HAND_LANDMARKS"],
{"FACE_LANDMARKS": FACEMESH_CONTOURS_POINTS})
pose = pose.normalize(pose_normalization_info(pose.header))
pose = pose_hide_legs(pose)
# from sign_vq.data.normalize import pre_process_mediapipe, normalize_mean_std
# from pose_anonymization.appearance import remove_appearance
# pose = remove_appearance(pose)
# pose = pre_process_mediapipe(pose)
# pose = normalize_mean_std(pose)
feat = np.nan_to_num(pose.body.data)
feat = feat.reshape(feat.shape[0], -1)
pose_frames = torch.from_numpy(np.expand_dims(feat, axis=0)).float()
return pose_frames
# @st.cache_data(hash_funcs={UploadedFile: lambda p: str(p.name)})
def load_pose(uploaded_file:UploadedFile)->Pose:
# with input_path.open("rb") as f_in:
if uploaded_file.name.endswith(".zst"):
return Pose.read(decompress(uploaded_file.read()))
else:
return Pose.read(uploaded_file.read())
@st.cache_data(hash_funcs={Pose: lambda p: np.array(p.body.data)})
def get_pose_frames(pose:Pose, transparency: bool = False):
v = PoseVisualizer(pose)
frames = [frame_data for frame_data in v.draw()]
if transparency:
cv_code = v.cv2.COLOR_BGR2RGBA
else:
cv_code = v.cv2.COLOR_BGR2RGB
images = [Image.fromarray(v.cv2.cvtColor(frame, cv_code)) for frame in frames]
return frames, images
def get_pose_gif(pose:Pose, step:int=1, fps:int=None):
if fps is not None:
pose.body.fps = fps
v = PoseVisualizer(pose)
frames = [frame_data for frame_data in v.draw()]
frames = frames[::step]
return v.save_gif(None,frames=frames)
uploaded_file = st.file_uploader("gimme a .pose file", type=[".pose", ".pose.zst"])
if uploaded_file is not None:
with st.spinner(f"Loading {uploaded_file.name}"):
pose = load_pose(uploaded_file)
frames, images = get_pose_frames(pose=pose)
st.success("done loading!")
# st.write(f"pose shape: {pose.body.data.shape}")
header = pose.header
st.write("### File Info")
with st.expander(f"Show full Pose-format header from {uploaded_file.name}"):
st.write(header)
# st.write(pose.body.data.shape)
# st.write(pose.body.fps)
st.write(f"### Selection")
components = pose.header.components
component_names = [component.name for component in components]
chosen_component_names = component_names
component_selection = st.radio("How to select components?", options=["manual", "signclip"])
if component_selection == "manual":
st.write(f"### Component selection: ")
chosen_component_names = st.pills("Components to visualize", options=component_names, selection_mode="multi", default=component_names)
# st.write(chosen_component_names)
st.write("### Point selection:")
point_names = []
new_chosen_components =[]
points_dict = {}
for component in pose.header.components:
with st.expander(f"points for {component.name}"):
if component.name in chosen_component_names:
st.write(f"#### {component.name}")
selected_points = st.multiselect(f"points for component {component.name}:",options=component.points, default=component.points)
if selected_points == component.points:
st.write(f"All selected, no need to add a points dict entry for {component.name}")
else:
st.write(f"Adding dictionary for {component.name}")
points_dict[component.name] = selected_points
# selected_points = st.multiselect("points to visualize", options=point_names, default=point_names)
if chosen_component_names:
if not points_dict:
points_dict=None
# else:
# st.write(points_dict)
# st.write(chosen_component_names)
pose = pose.get_components(chosen_component_names,points=points_dict)
# st.write(pose.header)
elif component_selection == "signclip":
st.write("Selected landmarks used for SignCLIP. (Face countours only)")
pose = pose.get_components(["POSE_LANDMARKS", "FACE_LANDMARKS", "LEFT_HAND_LANDMARKS", "RIGHT_HAND_LANDMARKS"],
{"FACE_LANDMARKS": FACEMESH_CONTOURS_POINTS})
# pose = pose.normalize(pose_normalization_info(pose.header)) Visualization goes blank
pose = pose_hide_legs(pose)
with st.expander("Show facemesh contour points:"):
st.write(f"{FACEMESH_CONTOURS_POINTS}")
with st.expander(f"Show header:"):
st.write(pose.header)
# st.write(f"signclip selected, new header:")
# st.write(pose.body.data.shape)
# st.write(pose.header)
else:
pass
st.write(f"### Visualization")
width=st.select_slider("select width of images",list(range(1,pose.header.dimensions.width +1)),value=pose.header.dimensions.width/2)
step=st.select_slider("Step value to select every nth image",list(range(1,len(frames))),value=1)
fps=st.slider("fps for visualization: ", min_value=1.0, max_value=pose.body.fps,value=pose.body.fps)
visualize_clicked = st.button(f"Visualize!")
if visualize_clicked:
st.write(f"Generating gif...")
# st.write(pose.body.data.shape)
st.image(get_pose_gif(pose=pose, step=step, fps=fps))
with st.expander("See header"):
st.write(f"### header after filtering:")
st.write(pose.header)
# st.write(pose.body.data.shape)
# st.write(visualize_pose(pose=pose)) # bunch of ndarrays
# st.write([Image.fromarray(v.cv2.cvtColor(frame, cv_code)) for frame in frames])
# for i, image in enumerate(images[::n]):
# print(f"i={i}")
# st.image(image=image, width=width)