Colin Leong
Add some more documentation at the top
77d65a9
raw
history blame
12 kB
from pathlib import Path
import json
from typing import Dict, Optional, List, Tuple
from collections import defaultdict
import streamlit as st
from streamlit.runtime.uploaded_file_manager import UploadedFile
import numpy as np
from pose_format import Pose
from pose_format.utils.generic import pose_hide_legs, reduce_holistic
from pose_format.pose_visualizer import PoseVisualizer
from pyzstd import decompress
from PIL import Image
import mediapipe as mp
mp_holistic = mp.solutions.holistic
FACEMESH_CONTOURS_POINTS = [
str(p)
for p in sorted(
set([p for p_tup in list(mp_holistic.FACEMESH_CONTOURS) for p in p_tup])
)
]
COMPONENT_SELECTION_METHODS = ["manual", "signclip", "youtube-asl", "reduce_holistic"]
def download_json(data):
json_data = json.dumps(data)
json_bytes = json_data.encode('utf-8')
return json_bytes
def get_points_dict_and_components_with_index_list(
pose: Pose, landmark_indices: List[int], components_to_include: Optional[List[str]]
) -> Tuple[List[str], Dict[str, List[str]]]:
"""Used to get components/points if you only have a list of indices,
e.g. listed in a research paper like YouTube-ASL.
If you want to also explicitly specify component names, you can.
So for example, to get the two hands and the nose you could do the following:
c_names, points_dict = get_points_dict_and_components_with_index_list(pose,
landmark_indices=[0] # which is "NOSE" within POSE_LANDMARKS components
components_to_include=["LEFT_HAND_LANDMARKS", "RIGHT_HAND_LANDMARKS]
)
then you can just use get_components
filtered_pose = pose.get_components(c_names, points_dict)
"""
components_to_get = []
points_dict = defaultdict(list)
for c in pose.header.components:
for point_name in c.points:
point_index = pose.header.get_point_index(c.name, point_name)
if point_index in landmark_indices:
components_to_get.append(c.name)
points_dict[c.name].append(point_name)
# print(f"Point with index {point_index} has name {c.name}:{point_name}")
if components_to_include:
components_to_get.extend(components_to_include)
components_to_get = list(set(components_to_get))
# print("*********************")
# print(components_to_get)
# print(points_dict)
return components_to_get, points_dict
# @st.cache_data(hash_funcs={UploadedFile: lambda p: str(p.name)})
def load_pose(uploaded_file: UploadedFile) -> Pose:
# with input_path.open("rb") as f_in:
if uploaded_file.name.endswith(".zst"):
return Pose.read(decompress(uploaded_file.read()))
else:
return Pose.read(uploaded_file.read())
@st.cache_data(hash_funcs={Pose: lambda p: np.asarray(p.body.data.data)})
def get_pose_frames(pose: Pose, transparency: bool = False):
v = PoseVisualizer(pose)
frames = [frame_data for frame_data in v.draw()]
if transparency:
cv_code = v.cv2.COLOR_BGR2RGBA
else:
cv_code = v.cv2.COLOR_BGR2RGB
images = [Image.fromarray(v.cv2.cvtColor(frame, cv_code)) for frame in frames]
return frames, images
def get_pose_gif(
pose: Pose,
step: int = 1,
start_frame: Optional[int] = None,
end_frame: Optional[int] = None,
fps: Optional[float] = None,
):
if fps is not None:
pose.body.fps = fps
v = PoseVisualizer(pose)
frames = [frame_data for frame_data in v.draw()]
frames = frames[start_frame:end_frame:step]
return v.save_gif(None, frames=frames)
st.write("# Pose-format explorer")
st.write(
"`pose-format` is a toolkit/library for 'handling, manipulation, and visualization of poses'. See [The documentation](https://pose-format.readthedocs.io/en/latest/)"
)
st.write(
"I made this app to help me visualize and understand the format, including different 'components' and 'points', and what they are named."
)
st.write(
"If you need a .pose file, here's a few:"
)
st.write("* One of [me doing a self-introduction](https://drive.google.com/file/d/1_L5sYVhONDBABuTmQUvjsl94LbFqzEyP/view?usp=sharing)")
st.write("* One of [me signing ASL 'HOUSE'](https://drive.google.com/file/d/1uggYqLyTA4XdDWaWsS9w5hKaPwW86IF_/view?usp=sharing)")
st.write(
"* ... or [the same file, but with the 10 extra landmarks](https://drive.google.com/file/d/1XHkfn24PIas1a3XUUXYXTX2DvYeUDuCI/view?usp=drive_link) from mediapipe holistic's [`refine_face_landmarks` option](https://github.com/sign-language-processing/pose/?tab=readme-ov-file#2-estimating-pose-from-video)"
)
uploaded_file = st.file_uploader("Upload a .pose file", type=[".pose", ".pose.zst"])
if uploaded_file is not None:
with st.spinner(f"Loading {uploaded_file.name}"):
pose = load_pose(uploaded_file)
# st.write(pose.body.data.shape)
frames, images = get_pose_frames(pose=pose)
st.success("Done loading!")
st.write("### File Info")
with st.expander(f"Show full Pose-format header from {uploaded_file.name}"):
st.write(pose.header)
st.write(f"### Selection")
component_selection = st.radio(
"How to select components?", options=COMPONENT_SELECTION_METHODS
)
component_names = [c.name for c in pose.header.components]
chosen_component_names = []
points_dict = {}
HIDE_LEGS = False
if component_selection == "manual":
chosen_component_names = st.pills(
"Select components to visualize",
options=component_names,
default=component_names,
selection_mode="multi",
)
for component in pose.header.components:
if component.name in chosen_component_names:
with st.expander(f"Points for {component.name}"):
selected_points = st.multiselect(
f"Select points for component {component.name}:",
options=component.points,
default=component.points,
)
if (
selected_points != component.points
): # Only add entry if not all points are selected
points_dict[component.name] = selected_points
elif component_selection == "signclip":
st.write("Selected landmarks used for SignCLIP.")
chosen_component_names = [
"POSE_LANDMARKS",
"FACE_LANDMARKS",
"LEFT_HAND_LANDMARKS",
"RIGHT_HAND_LANDMARKS",
]
points_dict = {"FACE_LANDMARKS": FACEMESH_CONTOURS_POINTS}
elif component_selection == "youtube-asl":
st.write("Selected landmarks used for SignCLIP.")
# https://arxiv.org/pdf/2306.15162
# For each hand, we use all 21 landmark points.
# Colin: So that's
# For the pose, we use 6 landmark points, for the shoulders, elbows and hips
# These are indices 11, 12, 13, 14, 23, 24
# For the face, we use 37 landmark points, from the eyes, eyebrows, lips, and face outline.
# These are indices 0, 4, 13, 14, 17, 33, 37, 39, 46, 52, 55, 61, 64, 81, 82, 93, 133, 151, 152, 159, 172, 178,
# 181, 263, 269, 276, 282, 285, 291, 294, 311, 323, 362, 386, 397, 468, 473.
# Colin: note that these are with refine_face_landmarks on, and are relative to the component itself. Working it all out the result is:
components=['POSE_LANDMARKS', 'FACE_LANDMARKS', 'LEFT_HAND_LANDMARKS', 'RIGHT_HAND_LANDMARKS']
points_dict={
"POSE_LANDMARKS": [
"LEFT_SHOULDER",
"RIGHT_SHOULDER",
"LEFT_HIP",
"RIGHT_HIP",
"LEFT_ELBOW",
"RIGHT_ELBOW"
],
"FACE_LANDMARKS": [
"0",
"4",
"13",
"14",
"17",
"33",
"37",
"39",
"46",
"52",
"55",
"61",
"64",
"81",
"82",
"93",
"133",
"151",
"152",
"159",
"172",
"178",
"181",
"263",
"269",
"276",
"282",
"285",
"291",
"294",
"311",
"323",
"362",
"386",
"397",
"468", # 468 only exists with the refine_face_landmarks option on MediaPipe
"473", # 473 only exists with the refine_face_landmarks option on MediaPipe
]
}
# Filter button logic
# Filter section
st.write("### Filter .pose File")
filtered = st.button("Apply Filter!")
if filtered:
st.write(f"Filtering strategy: {component_selection}")
if component_selection == "reduce_holistic":
# st.write(f"reduce_holistic:")
pose = reduce_holistic(pose)
st.write("Used pose_format.reduce_holistic")
else:
pose = pose.get_components(components=chosen_component_names, points=points_dict if points_dict else None
)
with st.expander("Show component list and points dict used for get_components"):
st.write("##### Component names")
st.write(chosen_component_names)
st.write("##### Points dict")
st.write(points_dict)
with st.expander("How to replicate in pose-format"):
st.write("##### Usage:")
st.write("How to achieve the same result with pose-format library")
# points_dict_str = json.dumps(points_dict, indent=4)
usage_string = f"components={chosen_component_names}\npoints_dict={points_dict}\npose = pose.get_components(components=components, points=points_dict)"
st.code(usage_string)
if HIDE_LEGS:
pose = pose_hide_legs(pose, remove=True)
st.session_state.filtered_pose = pose
filtered_pose = st.session_state.get("filtered_pose", pose)
if filtered_pose:
filtered_pose = st.session_state.get("filtered_pose", pose)
st.write("#### Filtered .pose file")
st.write(f"Pose data shape: {filtered_pose.body.data.shape}")
with st.expander("Show header"):
st.write(filtered_pose.header)
with st.expander("Show body"):
st.write(filtered_pose.body)
# with st.expander("Show data:"):
# for frame in filtered_pose.body.data:
# st.write(f"Frame:{frame}")
# for person in frame:
# st.write(person)
pose_file_out = Path(uploaded_file.name).with_suffix(".pose")
with pose_file_out.open("wb") as f:
pose.write(f)
with pose_file_out.open("rb") as f:
st.download_button(
"Download Filtered Pose", f, file_name=pose_file_out.name
)
st.write("### Visualization")
step = st.select_slider(
"Step value to select every nth image", list(range(1, len(frames))), value=1
)
fps = st.slider(
"FPS for visualization",
min_value=1.0,
max_value=filtered_pose.body.fps,
value=filtered_pose.body.fps,
)
start_frame, end_frame = st.slider(
"Select Frame Range",
0,
len(frames),
(0, len(frames)), # Default range
)
# Visualization button logic
if st.button("Visualize"):
# Load filtered pose if it exists; otherwise, use the unfiltered pose
pose_bytes = get_pose_gif(
pose=filtered_pose,
step=step,
start_frame=start_frame,
end_frame=end_frame,
fps=fps,
)
if pose_bytes is not None:
st.image(pose_bytes)