ceckenrode commited on
Commit
439a5de
·
1 Parent(s): c22dcd0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -101
app.py CHANGED
@@ -7,107 +7,6 @@ import cx_Oracle as ora
7
  import pandas as pd
8
  from pandas_profiling import ProfileReport
9
 
10
-
11
- QueryDatabase=False
12
- if QueryDatabase:
13
- dsn="jdbc:oracle:thin:@//ep15-scan01:1521/cdrpr03_4.uhc.com"
14
- user="UHG_801117753"
15
- passw="MiscPassword2023$!" # Fake Password - don't share this or run without changing to your ID
16
- dsn_tns = ora.makedsn('ep15-scan01', '1521', service_name='cdrpr03_4.uhc.com')
17
-
18
- # Create a connection object
19
- conn = ora.connect(user=user, password=passw, dsn=dsn_tns)
20
-
21
- # Create a cursor object
22
- c = conn.cursor()
23
-
24
- # Execute the SQL query and store the result in a pandas dataframe
25
- query = """
26
- select
27
- count(*) as RecordCount,
28
- --Age, SID, MBR_ID, -- Optional toggle - remove these to collapse across members with a record count.
29
- TOPICID, TOPIC_DESC, TOPIC, PATHWAY, CATEGORY, INTERVENTION_DESC,
30
- SYMPTOM_DESC, KNOWLEDGE_DESC, BEHAVIOR_DESC, STATUS_DESC, INT_CATEGORY_ID, RSALINEOFBUSINESS, TARGET,
31
- CAREDESCRIPTOR, URGENCY, TOPICSOURCE, SIGNSSYMPTOMS, POC_SGN_SYMP_ID, SPOKENLANGUAGE, HEALTHTOPIC,
32
- CATEGORYID, TARGETID, CAREID, CQM, Gender, Race, AgeGroup
33
- from
34
- (
35
- select
36
- aa.SBSCR_ID_TXT SID,
37
- a.MBR_ID,
38
- b.POC_PROB_ID TopicID,
39
- b.POC_PROB_DESC Topic_Desc,
40
- REPLACE(REPLACE(b.POC_PROB_NM,'/',''),' ','') Topic,
41
- a.POC_PROB_SRC_DESC Pathway,
42
- (select POC_INTRVN_CATGY_NM from POC_INTRVN_CATGY pig where pig.POC_INTRVN_CATGY_ID = d.POC_INTRVN_CATGY_ID) as Category,
43
- c.ADD_DESC Intervention_Desc,
44
- e.ADD_DESC Symptom_Desc,
45
- a.KNW_OTCOME_RT_ADD_DESC KNOWLEDGE_DESC,
46
- a.BHV_OTCOME_RT_ADD_DESC BEHAVIOR_DESC,
47
- a.STS_OTCOME_RT_ADD_DESC STATUS_DESC,
48
- d.POC_INTRVN_CATGY_ID Int_Category_ID,
49
- RSA_POP_TYP_ID,
50
- (select ref_desc from ref where ref_nm = 'rsaPopulationType' and ref_cd = RSA_POP_TYP_ID) as RSALineOfBusiness,
51
- (select POC_INTRVN_TGT_NM from POC_INTRVN_TGT pit where pit.POC_INTRVN_TGT_ID = d.POC_INTRVN_TGT_ID) as Target,
52
- (select POC_INTRVN_CARE_DESC from POC_INTRVN_CARE pic where pic.POC_INTRVN_CARE_ID = d.POC_INTRVN_CARE_ID) as CareDescriptor,
53
- Case to_char(a.POC_PROB_URGNCY_MOD_ID) when '1' then 'Actual' when '3' then 'Potential' else 'Other' end as Urgency,
54
- (select ref_desc from ref where ref_nm = 'pocProbSourceType' and ref_cd = a.POC_PROB_SRC_TYP_ID) as TopicSource,
55
- (select POC_SGN_SYMP_NM from POC_SGN_SYMP pss where pss.POC_SGN_SYMP_ID = e.POC_SGN_SYMP_ID) as SignsSymptoms,
56
- e.POC_SGN_SYMP_ID,
57
- CALAP_SPOKEN_LANG_TYP_ID SpokenLanguage,
58
- REPLACE(b.POC_PROB_NM,'/','') HealthTopic,
59
- a.POC_PROB_ID HealthTopicID,
60
- d.POC_INTRVN_CATGY_ID CategoryID,
61
- d.POC_INTRVN_TGT_ID TargetID,
62
- d.POC_INTRVN_CARE_ID CareID,
63
- c.CQM_IND CQM,
64
-
65
- aa.GDR_CD Gender,
66
- aa.RACE_CD Race,
67
- (2023 - EXTRACT(year FROM aa.BTH_DT)) Age,
68
- Case --Five age groups: 0-18, 19-44, 45-64, 65-84, and 85 and over
69
- when ((2023 - EXTRACT(year FROM aa.BTH_DT))>=0 and (2023 - EXTRACT(year FROM aa.BTH_DT))<=18) then 'Age0to18'
70
- when ((2023 - EXTRACT(year FROM aa.BTH_DT))> 18 and (2023 - EXTRACT(year FROM aa.BTH_DT))<=44) then 'Age19to44'
71
- when ((2023 - EXTRACT(year FROM aa.BTH_DT))> 44 and (2023 - EXTRACT(year FROM aa.BTH_DT))<=64) then 'Age44to64'
72
- when ((2023 - EXTRACT(year FROM aa.BTH_DT))> 64 and (2023 - EXTRACT(year FROM aa.BTH_DT))<=84) then 'Age64to84'
73
- when ((2023 - EXTRACT(year FROM aa.BTH_DT))> 85) then 'Age85andOver'
74
- else 'Other' end as AgeGroup
75
-
76
- from MBR_POC_PROB a -- select * from MBR_POC_PROB where MBR_ID=117179570
77
- join MBR aa on a.MBR_ID = aa.MBR_ID --and a.POC_PROB_URGNCY_MOD_ID = 1 --actual
78
- join STG_HSR.POC_PROB b on a.POC_PROB_ID = b.POC_PROB_ID
79
- join MBR_POC_PROB_INTRVN c on
80
- (a.MBR_POC_PROB_ID = c.MBR_POC_PROB_ID and c.REMV_FROM_PLN_LIST_IND=0)
81
- join POC_INTRVN d on c.POC_INTRVN_ID = d.POC_INTRVN_ID
82
- left outer join MBR_POC_PROB_SGN_SYMP e
83
- on (e.MBR_POC_PROB_ID = c.MBR_POC_PROB_ID)
84
- where a.POC_PROB_URGNCY_MOD_ID = 1 and
85
-
86
- -- Optional toggle - 1 versus 120 days.
87
- a.CHG_DTTM > sysdate - 1 -- 1 Day
88
- -- a.CHG_DTTM > sysdate - 1 -- 182 Days = 6 Months
89
-
90
- ) i
91
- group by
92
- --Age, SID, MBR_ID, -- Optional toggle - remove these to collapse across members with a record count.
93
- TOPICID, TOPIC_DESC, TOPIC, PATHWAY, CATEGORY, INTERVENTION_DESC, SYMPTOM_DESC, KNOWLEDGE_DESC, BEHAVIOR_DESC, STATUS_DESC,INT_CATEGORY_ID,RSALINEOFBUSINESS,
94
- TARGET, CAREDESCRIPTOR, URGENCY, TOPICSOURCE, SIGNSSYMPTOMS, POC_SGN_SYMP_ID, SPOKENLANGUAGE, HEALTHTOPIC,
95
- CATEGORYID, TARGETID, CAREID, CQM, Gender, Race, AgeGroup
96
- -- Optional toggle:
97
- --order by MBR_ID desc
98
- order by TOPICID desc -- orders by Count
99
- """
100
- df = pd.read_sql(query, con=conn)
101
- # Close the cursor and connection
102
- c.close()
103
- conn.close()
104
- # Show the dataframe in a streamlit grid
105
- st.dataframe(df)
106
-
107
- # automatic visualizer
108
-
109
- # st.set_page_config(page_title="File Upload and Profiling", layout="wide")
110
-
111
  st.title("File Upload and Profiling")
112
 
113
  # uploaded_file = st.file_uploader("Upload a CSV file", type="csv")
 
7
  import pandas as pd
8
  from pandas_profiling import ProfileReport
9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  st.title("File Upload and Profiling")
11
 
12
  # uploaded_file = st.file_uploader("Upload a CSV file", type="csv")