import gradio_client from gradio_client import Client, file from urllib.parse import quote from huggingface_hub import InferenceClient import numpy as np import gradio as gr # Use a pipeline as a high-level helper from transformers import pipeline #from optimum.onnxruntime import pipeline pipe = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large") def generate_img(prompt): return client.text_to_image(prompt) def pollinations_url_seedless(a, width=512, height=512): urlprompt=quote(str(a)) url=f"https://image.pollinations.ai/prompt/{urlprompt}?width={width}&height={height}" return url def interrogate(img): result = pipe(img) return result['generated_text'] def rountrip(img): prompt=interrogate(img) print(prompt) url=pollinations_url_seedless(prompt) return generate_img(prompt),prompt,url demo = gr.Interface(rountrip, gr.Image(type= 'filepath'),[gr.Image(type= 'filepath'),"textbox",gr.Image(label="pollination")]) demo.launch()