fix oauth
Browse files- app.py +31 -11
- requirements.txt +2 -1
app.py
CHANGED
|
@@ -2,8 +2,11 @@ import os
|
|
| 2 |
|
| 3 |
import gradio as gr
|
| 4 |
import numpy as np
|
|
|
|
| 5 |
from huggingface_hub import InferenceClient, login
|
| 6 |
|
|
|
|
|
|
|
| 7 |
MAX_SEED = np.iinfo(np.int32).max
|
| 8 |
MAX_IMAGE_SIZE = 2048
|
| 9 |
TOKEN = None
|
|
@@ -11,11 +14,29 @@ TOKEN = None
|
|
| 11 |
def get_token(oauth_token: gr.OAuthToken | None):
|
| 12 |
global TOKEN
|
| 13 |
if oauth_token and oauth_token.token:
|
|
|
|
| 14 |
TOKEN = oauth_token.token
|
| 15 |
else:
|
| 16 |
-
|
|
|
|
| 17 |
|
| 18 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
client = InferenceClient(provider="fal-ai", token=TOKEN)
|
| 20 |
image = client.text_to_image(
|
| 21 |
prompt=prompt,
|
|
@@ -41,11 +62,12 @@ css="""
|
|
| 41 |
"""
|
| 42 |
|
| 43 |
with gr.Blocks(css=css) as demo:
|
|
|
|
| 44 |
with gr.Sidebar():
|
| 45 |
gr.Markdown("# Inference Provider")
|
| 46 |
gr.Markdown("This Space showcases the black-forest-labs/FLUX.1-dev model, served by the nebius API. Sign in with your Hugging Face account to use this API.")
|
| 47 |
button = gr.LoginButton("Sign in")
|
| 48 |
-
button.click(fn=get_token, inputs=
|
| 49 |
|
| 50 |
with gr.Column(elem_id="col-container"):
|
| 51 |
gr.Markdown(f"""# FLUX.1 [schnell] with fal-ai through HF Inference Providers ⚡
|
|
@@ -72,11 +94,9 @@ learn more about HF Inference Providers [here](https://huggingface.co/docs/infer
|
|
| 72 |
minimum=0,
|
| 73 |
maximum=MAX_SEED,
|
| 74 |
step=1,
|
| 75 |
-
value=
|
| 76 |
)
|
| 77 |
-
|
| 78 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 79 |
-
|
| 80 |
with gr.Row():
|
| 81 |
|
| 82 |
width = gr.Slider(
|
|
@@ -103,12 +123,12 @@ learn more about HF Inference Providers [here](https://huggingface.co/docs/infer
|
|
| 103 |
minimum=1,
|
| 104 |
maximum=50,
|
| 105 |
step=1,
|
| 106 |
-
value=
|
| 107 |
)
|
| 108 |
|
| 109 |
gr.Examples(
|
| 110 |
examples = examples,
|
| 111 |
-
fn =
|
| 112 |
inputs = [prompt],
|
| 113 |
outputs = [result, seed],
|
| 114 |
cache_examples="lazy"
|
|
@@ -116,8 +136,8 @@ learn more about HF Inference Providers [here](https://huggingface.co/docs/infer
|
|
| 116 |
|
| 117 |
gr.on(
|
| 118 |
triggers=[run_button.click, prompt.submit],
|
| 119 |
-
fn =
|
| 120 |
-
inputs = [prompt, seed,
|
| 121 |
outputs = [result, seed]
|
| 122 |
)
|
| 123 |
|
|
|
|
| 2 |
|
| 3 |
import gradio as gr
|
| 4 |
import numpy as np
|
| 5 |
+
from dotenv import load_dotenv
|
| 6 |
from huggingface_hub import InferenceClient, login
|
| 7 |
|
| 8 |
+
load_dotenv()
|
| 9 |
+
|
| 10 |
MAX_SEED = np.iinfo(np.int32).max
|
| 11 |
MAX_IMAGE_SIZE = 2048
|
| 12 |
TOKEN = None
|
|
|
|
| 14 |
def get_token(oauth_token: gr.OAuthToken | None):
|
| 15 |
global TOKEN
|
| 16 |
if oauth_token and oauth_token.token:
|
| 17 |
+
print("Received OAuth token, logging in...")
|
| 18 |
TOKEN = oauth_token.token
|
| 19 |
else:
|
| 20 |
+
print("No OAuth token provided, using environment variable HF_TOKEN.")
|
| 21 |
+
TOKEN = os.environ.get("HF_TOKEN")
|
| 22 |
|
| 23 |
+
def generate(prompt: str, seed: int =42, width: int =1024, height: int =1024, num_inference_steps: int = 25):
|
| 24 |
+
"""
|
| 25 |
+
Generate an image from a prompt.
|
| 26 |
+
Args:
|
| 27 |
+
prompt (str):
|
| 28 |
+
The prompt to generate an image from.
|
| 29 |
+
seed (int, default=42):
|
| 30 |
+
Seed for the random number generator.
|
| 31 |
+
height (int, default=1024):
|
| 32 |
+
The height in pixels of the output image
|
| 33 |
+
width (int, default=1024):
|
| 34 |
+
The width in pixels of the output image
|
| 35 |
+
num_inference_steps (int, default=25):
|
| 36 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
| 37 |
+
expense of slower inference.
|
| 38 |
+
|
| 39 |
+
"""
|
| 40 |
client = InferenceClient(provider="fal-ai", token=TOKEN)
|
| 41 |
image = client.text_to_image(
|
| 42 |
prompt=prompt,
|
|
|
|
| 62 |
"""
|
| 63 |
|
| 64 |
with gr.Blocks(css=css) as demo:
|
| 65 |
+
demo.load(get_token, inputs=None, outputs=None)
|
| 66 |
with gr.Sidebar():
|
| 67 |
gr.Markdown("# Inference Provider")
|
| 68 |
gr.Markdown("This Space showcases the black-forest-labs/FLUX.1-dev model, served by the nebius API. Sign in with your Hugging Face account to use this API.")
|
| 69 |
button = gr.LoginButton("Sign in")
|
| 70 |
+
button.click(fn=get_token, inputs=[], outputs=[])
|
| 71 |
|
| 72 |
with gr.Column(elem_id="col-container"):
|
| 73 |
gr.Markdown(f"""# FLUX.1 [schnell] with fal-ai through HF Inference Providers ⚡
|
|
|
|
| 94 |
minimum=0,
|
| 95 |
maximum=MAX_SEED,
|
| 96 |
step=1,
|
| 97 |
+
value=42,
|
| 98 |
)
|
| 99 |
+
|
|
|
|
|
|
|
| 100 |
with gr.Row():
|
| 101 |
|
| 102 |
width = gr.Slider(
|
|
|
|
| 123 |
minimum=1,
|
| 124 |
maximum=50,
|
| 125 |
step=1,
|
| 126 |
+
value=25,
|
| 127 |
)
|
| 128 |
|
| 129 |
gr.Examples(
|
| 130 |
examples = examples,
|
| 131 |
+
fn = generate,
|
| 132 |
inputs = [prompt],
|
| 133 |
outputs = [result, seed],
|
| 134 |
cache_examples="lazy"
|
|
|
|
| 136 |
|
| 137 |
gr.on(
|
| 138 |
triggers=[run_button.click, prompt.submit],
|
| 139 |
+
fn = generate,
|
| 140 |
+
inputs = [prompt, seed, width, height, num_inference_steps],
|
| 141 |
outputs = [result, seed]
|
| 142 |
)
|
| 143 |
|
requirements.txt
CHANGED
|
@@ -1,2 +1,3 @@
|
|
| 1 |
huggingface-hub
|
| 2 |
-
numpy
|
|
|
|
|
|
| 1 |
huggingface-hub
|
| 2 |
+
numpy
|
| 3 |
+
python-dotenv
|