File size: 25,044 Bytes
1d5f04c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0885640
1d5f04c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
import gradio as gr
import onnxruntime as ort
import numpy as np
from PIL import Image, ImageDraw, ImageFont
import json
import os
import io
import requests
import matplotlib.pyplot as plt
import matplotlib
from huggingface_hub import hf_hub_download
from dataclasses import dataclass
from typing import List, Dict, Optional, Tuple

# MatplotlibのバックエンドをAggに設定 (GUIなし環境用)
matplotlib.use('Agg')

# --- onnx_predict.pyからの移植 ---

@dataclass
class LabelData:
    names: list[str]
    rating: list[np.int64]
    general: list[np.int64]
    artist: list[np.int64]
    character: list[np.int64]
    copyright: list[np.int64]
    meta: list[np.int64]
    quality: list[np.int64]

def pil_ensure_rgb(image: Image.Image) -> Image.Image:
    if image.mode not in ["RGB", "RGBA"]:
        image = image.convert("RGBA") if "transparency" in image.info else image.convert("RGB")
    if image.mode == "RGBA":
        background = Image.new("RGB", image.size, (255, 255, 255))
        background.paste(image, mask=image.split()[3])
        image = background
    return image

def pil_pad_square(image: Image.Image) -> Image.Image:
    width, height = image.size
    if width == height:
        return image
    new_size = max(width, height)
    new_image = Image.new("RGB", (new_size, new_size), (255, 255, 255))
    paste_position = ((new_size - width) // 2, (new_size - height) // 2)
    new_image.paste(image, paste_position)
    return new_image

def load_tag_mapping(mapping_path):
    with open(mapping_path, 'r', encoding='utf-8') as f:
        tag_mapping_data = json.load(f)

    # 新旧フォーマット対応
    if isinstance(tag_mapping_data, dict) and "idx_to_tag" in tag_mapping_data:
        # 旧フォーマット (辞書の中にidx_to_tagとtag_to_categoryがある)
        idx_to_tag_dict = tag_mapping_data["idx_to_tag"]
        tag_to_category_dict = tag_mapping_data["tag_to_category"]
        # tag_mapping_dataが文字列キーになっている可能性があるのでintに変換
        idx_to_tag = {int(k): v for k, v in idx_to_tag_dict.items()}
        tag_to_category = tag_to_category_dict
    elif isinstance(tag_mapping_data, dict):
         # 新フォーマット (キーがインデックスの辞書)
        tag_mapping_data = {int(k): v for k, v in tag_mapping_data.items()}
        idx_to_tag = {}
        tag_to_category = {}
        for idx, data in tag_mapping_data.items():
            tag = data['tag']
            category = data['category']
            idx_to_tag[idx] = tag
            tag_to_category[tag] = category
    else:
        raise ValueError("Unsupported tag mapping format")


    names = [None] * (max(idx_to_tag.keys()) + 1)
    rating = []
    general = []
    artist = []
    character = []
    copyright = []
    meta = []
    quality = []

    for idx, tag in idx_to_tag.items():
        if idx >= len(names): # namesリストのサイズが足りない場合拡張
             names.extend([None] * (idx - len(names) + 1))
        names[idx] = tag
        category = tag_to_category.get(tag, 'Unknown') # カテゴリが見つからない場合

        if category == 'Rating':
            rating.append(idx)
        elif category == 'General':
            general.append(idx)
        elif category == 'Artist':
            artist.append(idx)
        elif category == 'Character':
            character.append(idx)
        elif category == 'Copyright':
            copyright.append(idx)
        elif category == 'Meta':
            meta.append(idx)
        elif category == 'Quality':
            quality.append(idx)
        # Unknownカテゴリは無視

    label_data = LabelData(
        names=names,
        rating=np.array(rating, dtype=np.int64),
        general=np.array(general, dtype=np.int64),
        artist=np.array(artist, dtype=np.int64),
        character=np.array(character, dtype=np.int64),
        copyright=np.array(copyright, dtype=np.int64),
        meta=np.array(meta, dtype=np.int64),
        quality=np.array(quality, dtype=np.int64)
    )

    return label_data, idx_to_tag, tag_to_category


def preprocess_image(image: Image.Image, target_size=(448, 448)):
    image = pil_ensure_rgb(image)
    image = pil_pad_square(image)
    image_resized = image.resize(target_size, Image.BICUBIC)
    img_array = np.array(image_resized, dtype=np.float32) / 255.0
    img_array = img_array.transpose(2, 0, 1) # HWC -> CHW
    # RGB -> BGR (モデルがBGRを期待する場合 - WD Tagger v3はBGR)
    # WD Tagger V2/V1はRGBなので注意
    img_array = img_array[::-1, :, :]
    mean = np.array([0.5, 0.5, 0.5], dtype=np.float32).reshape(3, 1, 1)
    std = np.array([0.5, 0.5, 0.5], dtype=np.float32).reshape(3, 1, 1)
    img_array = (img_array - mean) / std
    img_array = np.expand_dims(img_array, axis=0) # Add batch dimension
    return image, img_array # Return original PIL image and processed numpy array

def get_tags(probs, labels: LabelData, gen_threshold, char_threshold):
    result = {
        "rating": [], "general": [], "character": [],
        "copyright": [], "artist": [], "meta": [], "quality": []
    }

    # Rating (select the max)
    if labels.rating.size > 0:
        rating_probs = probs[labels.rating]
        if rating_probs.size > 0:
            rating_idx = np.argmax(rating_probs)
            # Check if the index is valid for names list
            if labels.rating[rating_idx] < len(labels.names):
                 rating_name = labels.names[labels.rating[rating_idx]]
                 rating_conf = float(rating_probs[rating_idx])
                 result["rating"].append((rating_name, rating_conf))
            else:
                 print(f"Warning: Rating index {labels.rating[rating_idx]} out of bounds for names list (size {len(labels.names)}).")


    # Quality (select the max)
    if labels.quality.size > 0:
        quality_probs = probs[labels.quality]
        if quality_probs.size > 0:
             quality_idx = np.argmax(quality_probs)
             if labels.quality[quality_idx] < len(labels.names):
                  quality_name = labels.names[labels.quality[quality_idx]]
                  quality_conf = float(quality_probs[quality_idx])
                  result["quality"].append((quality_name, quality_conf))
             else:
                  print(f"Warning: Quality index {labels.quality[quality_idx]} out of bounds for names list (size {len(labels.names)}).")


    category_map = {
        "general": (labels.general, gen_threshold),
        "character": (labels.character, char_threshold),
        "copyright": (labels.copyright, char_threshold),
        "artist": (labels.artist, char_threshold),
        "meta": (labels.meta, gen_threshold)
    }

    for category, (indices, threshold) in category_map.items():
        if indices.size > 0:
            # Filter indices to be within the bounds of probs and labels.names
            valid_indices = indices[(indices < len(probs)) & (indices < len(labels.names))]
            if valid_indices.size > 0:
                 category_probs = probs[valid_indices]
                 mask = category_probs >= threshold
                 selected_indices = valid_indices[mask]
                 selected_probs = category_probs[mask]
                 for idx, prob in zip(selected_indices, selected_probs):
                      result[category].append((labels.names[idx], float(prob)))


    # Sort by probability
    for k in result:
        result[k] = sorted(result[k], key=lambda x: x[1], reverse=True)

    return result

def visualize_predictions(image: Image.Image, predictions, threshold=0.45):
    # Filter out unwanted meta tags
    filtered_meta = []
    excluded_meta_patterns = ['id', 'commentary', 'request', 'mismatch']
    for tag, prob in predictions["meta"]:
        if not any(pattern in tag.lower() for pattern in excluded_meta_patterns):
            filtered_meta.append((tag, prob))
    predictions["meta"] = filtered_meta # Replace with filtered

    # Create plot
    fig = plt.figure(figsize=(20, 12), dpi=100)
    gs = fig.add_gridspec(1, 2, width_ratios=[1.2, 1])
    ax_img = fig.add_subplot(gs[0, 0])
    ax_img.imshow(image)
    ax_img.set_title("Original Image")
    ax_img.axis('off')
    ax_tags = fig.add_subplot(gs[0, 1])

    all_tags = []
    all_probs = []
    all_colors = []
    color_map = {'rating': 'red', 'character': 'blue', 'copyright': 'purple',
                 'artist': 'orange', 'general': 'green', 'meta': 'gray', 'quality': 'yellow'}

    for cat, prefix, color in [('rating', 'R', 'red'), ('character', 'C', 'blue'),
                              ('copyright', '©', 'purple'), ('artist', 'A', 'orange'),
                              ('general', 'G', 'green'), ('meta', 'M', 'gray'), ('quality', 'Q', 'yellow')]:
        for tag, prob in predictions[cat]:
            all_tags.append(f"[{prefix}] {tag}")
            all_probs.append(prob)
            all_colors.append(color)

    if not all_tags:
        ax_tags.text(0.5, 0.5, "No tags found above threshold", ha='center', va='center')
        ax_tags.set_title(f"Tags (threshold={threshold})")
        ax_tags.axis('off')
        plt.tight_layout()
        # Save figure to a BytesIO object
        buf = io.BytesIO()
        plt.savefig(buf, format='png', dpi=100)
        plt.close(fig)
        buf.seek(0)
        return Image.open(buf)


    sorted_indices = sorted(range(len(all_probs)), key=lambda i: all_probs[i], reverse=True)
    all_tags = [all_tags[i] for i in sorted_indices]
    all_probs = [all_probs[i] for i in sorted_indices]
    all_colors = [all_colors[i] for i in sorted_indices]

    all_tags.reverse()
    all_probs.reverse()
    all_colors.reverse()

    num_tags = len(all_tags)
    bar_height = 0.8
    if num_tags > 30: bar_height = 0.8 * (30 / num_tags)
    y_positions = np.arange(num_tags)

    bars = ax_tags.barh(y_positions, all_probs, height=bar_height, color=all_colors)
    ax_tags.set_yticks(y_positions)
    ax_tags.set_yticklabels(all_tags)

    fontsize = 10
    if num_tags > 40: fontsize = 8
    elif num_tags > 60: fontsize = 6
    for label in ax_tags.get_yticklabels(): label.set_fontsize(fontsize)

    for i, (bar, prob) in enumerate(zip(bars, all_probs)):
        ax_tags.text(min(prob + 0.02, 0.98), y_positions[i], f"{prob:.3f}",
                     va='center', fontsize=fontsize)

    ax_tags.set_xlim(0, 1)
    ax_tags.set_title(f"Tags (threshold={threshold})")

    from matplotlib.patches import Patch
    legend_elements = [Patch(facecolor=color, label=cat.capitalize()) for cat, color in color_map.items()]
    ax_tags.legend(handles=legend_elements, loc='lower right', fontsize=8)

    plt.tight_layout()
    plt.subplots_adjust(bottom=0.05)

    # Save figure to a BytesIO object
    buf = io.BytesIO()
    plt.savefig(buf, format='png', dpi=100)
    plt.close(fig)
    buf.seek(0)
    return Image.open(buf)

# --- Gradio App Logic ---

# 定数
REPO_ID = "cella110n/cl_tagger"
MODEL_FILENAME = "cl_eva02_tagger_v1_250426/model_optimized.onnx"
# MODEL_FILENAME = "cl_eva02_tagger_v1_250426/model.onnx" # Use non-optimized if needed
TAG_MAPPING_FILENAME = "cl_eva02_tagger_v1_250426/tag_mapping.json"
CACHE_DIR = "./model_cache"

# グローバル変数(モデルとラベルをキャッシュ)
onnx_session = None
labels_data = None
tag_to_category_map = None

def download_model_files():
    """Hugging Face Hubからモデルとタグマッピングをダウンロード"""
    print("Downloading model files...")
    # 環境変数からHFトークンを取得 (プライベートリポジトリ用)
    hf_token = os.environ.get("HF_TOKEN")
    try:
        model_path = hf_hub_download(repo_id=REPO_ID, filename=MODEL_FILENAME, cache_dir=CACHE_DIR, token=hf_token)
        tag_mapping_path = hf_hub_download(repo_id=REPO_ID, filename=TAG_MAPPING_FILENAME, cache_dir=CACHE_DIR, token=hf_token)
        print(f"Model downloaded to: {model_path}")
        print(f"Tag mapping downloaded to: {tag_mapping_path}")
        return model_path, tag_mapping_path
    except Exception as e:
        print(f"Error downloading files: {e}")
        # トークンがない場合のエラーメッセージを改善
        if "401 Client Error" in str(e) or "Repository not found" in str(e):
             raise gr.Error(f"Could not download files from {REPO_ID}. "
                           f"If this is a private repository, make sure to set the HF_TOKEN secret in your Space settings.")
        else:
            raise gr.Error(f"Error downloading files: {e}")


def initialize_model():
    """モデルとラベルデータを初期化(キャッシュ)"""
    global onnx_session, labels_data, tag_to_category_map
    if onnx_session is None:
        model_path, tag_mapping_path = download_model_files()
        print("Loading model and labels...")
        # ONNXセッションの初期化 (GPU優先)
        available_providers = ort.get_available_providers()
        print(f"Available ONNX Runtime providers: {available_providers}")
        providers = []
        if 'CUDAExecutionProvider' in available_providers:
            providers.append('CUDAExecutionProvider')
        # elif 'DmlExecutionProvider' in available_providers: # DirectML (Windows)
        #     providers.append('DmlExecutionProvider')
        providers.append('CPUExecutionProvider') # Always include CPU as fallback

        try:
            onnx_session = ort.InferenceSession(model_path, providers=providers)
            print(f"Using ONNX Runtime provider: {onnx_session.get_providers()[0]}")
        except Exception as e:
            print(f"Error initializing ONNX session with providers {providers}: {e}")
            print("Falling back to CPUExecutionProvider only.")
            onnx_session = ort.InferenceSession(model_path, providers=['CPUExecutionProvider'])

        labels_data, _, tag_to_category_map = load_tag_mapping(tag_mapping_path)
        print("Model and labels loaded.")

def predict(image_input, gen_threshold, char_threshold, output_mode):
    """Gradioインターフェース用の予測関数"""
    initialize_model() # モデルがロードされていなければロード

    if image_input is None:
        return "Please upload an image.", None

    print(f"Processing image with thresholds: gen={gen_threshold}, char={char_threshold}")

    # PIL Imageオブジェクトであることを確認
    if not isinstance(image_input, Image.Image):
         try:
             # URLの場合
             if isinstance(image_input, str) and image_input.startswith("http"):
                  response = requests.get(image_input)
                  response.raise_for_status()
                  image = Image.open(io.BytesIO(response.content))
             # ファイルパスの場合 (Gradioでは通常発生しないが念のため)
             elif isinstance(image_input, str) and os.path.exists(image_input):
                  image = Image.open(image_input)
             # Numpy配列の場合 (Gradio Imageコンポーネントからの入力)
             elif isinstance(image_input, np.ndarray):
                  image = Image.fromarray(image_input)
             else:
                  raise ValueError("Unsupported image input type")
         except Exception as e:
             print(f"Error loading image: {e}")
             return f"Error loading image: {e}", None
    else:
        image = image_input


    # 前処理
    original_pil_image, input_data = preprocess_image(image)

    # データ型をモデルの期待に合わせる (通常はfloat32)
    input_name = onnx_session.get_inputs()[0].name
    expected_type = onnx_session.get_inputs()[0].type
    if expected_type == 'tensor(float16)':
        input_data = input_data.astype(np.float16)
    else:
        input_data = input_data.astype(np.float32) # Default to float32

    # 推論
    start_time = time.time()
    outputs = onnx_session.run(None, {input_name: input_data})[0]
    inference_time = time.time() - start_time
    print(f"Inference completed in {inference_time:.3f} seconds")

    # シグモイド関数で確率に変換
    probs = 1 / (1 + np.exp(-outputs[0])) # Apply sigmoid to the first batch item

    # タグ取得
    predictions = get_tags(probs, labels_data, gen_threshold, char_threshold)

    # タグを整形
    output_tags = []
    # RatingとQualityを最初に追加
    if predictions["rating"]:
        output_tags.append(predictions["rating"][0][0].replace("_", " "))
    if predictions["quality"]:
         output_tags.append(predictions["quality"][0][0].replace("_", " "))

    # 残りのカテゴリをアルファベット順に追加(オプション)
    for category in ["artist", "character", "copyright", "general", "meta"]:
        tags = [tag.replace("_", " ") for tag, prob in predictions[category]
                 if not (category == "meta" and any(p in tag.lower() for p in ['id', 'commentary','mismatch']))] # メタタグフィルタリング
        output_tags.extend(tags)

    output_text = ", ".join(output_tags)

    if output_mode == "Tags Only":
        return output_text, None
    else: # Visualization
        viz_image = visualize_predictions(original_pil_image, predictions, gen_threshold)
        return output_text, viz_image

# --- Gradio Interface Definition ---
import time

# CSS for styling
css = """

.gradio-container { font-family: 'IBM Plex Sans', sans-serif; }

footer { display: none !important; }

.gr-prose { max-width: 100% !important; }

"""
# Custom JS for image pasting and URL handling
js = """

async function paste_image(blob, gen_thresh, char_thresh, out_mode) {

    const data = await fetch(blob)

    const image_data = await data.blob()

    const file = new File([image_data], "pasted_image.png",{ type: image_data.type })

    const dt = new DataTransfer()

    dt.items.add(file)

    const element = document.querySelector('#input-image input[type="file"]')

    element.files = dt.files

    // Trigger the change event manually

    const event = new Event('change', { bubbles: true })

    element.dispatchEvent(event)

    // Wait a bit for Gradio to process the change, then trigger predict if needed

    // await new Promise(resolve => setTimeout(resolve, 100)); // Optional delay

    // You might need to manually trigger the prediction or rely on Gradio's auto-triggering

    return [file, gen_thresh, char_thresh, out_mode]; // Return input for Gradio function

}



async function paste_update(evt){

    if (!evt.clipboardData || !evt.clipboardData.items) return;

    var url = evt.clipboardData.getData('text');

    if (url) {

        // Basic check for image URL (you might want a more robust check)

        if (/\.(jpg|jpeg|png|webp|bmp)$/i.test(url)) {

            // Create a button or link to load the URL

            const url_container = document.getElementById('url-input-container');

            url_container.innerHTML = `<p>Detected URL: <button id="load-url-btn" class="gr-button gr-button-sm gr-button-secondary">${url}</button></p>`;



            document.getElementById('load-url-btn').onclick = async () => {

                // Simulate file upload from URL - Gradio's Image component handles URLs directly

                 const element = document.querySelector('#input-image input[type="file"]');

                 // Can't directly set URL to file input, so we pass it to Gradio fn

                 // Or maybe update the image display src directly if possible?



                 // Let Gradio handle the URL - user needs to click predict

                 // We can pre-fill the image component if Gradio supports it via JS,

                 // but it's simpler to just let the user click predict after pasting URL.

                 alert("URL detected. Please ensure the image input is cleared and then press 'Predict' or re-upload the image.");

                 // Clear current image preview if possible?



                 // A workaround: display the URL and let the user manually trigger prediction

                 // Or, try to use Gradio's JS API if available to update the Image component value

                 // For now, just inform the user.

            };

            return; // Don't process as image paste if URL is found

        }

    }



    var items = evt.clipboardData.items;

    for (var i = 0; i < items.length; i++) {

        if (items[i].type.indexOf("image") === 0) {

            var blob = items[i].getAsFile();

            var reader = new FileReader();

            reader.onload = function(event){

                 // Update the Gradio Image component source directly

                 const imgElement = document.querySelector('#input-image img'); // Find the img tag inside the component

                 if (imgElement) {

                     imgElement.src = event.target.result;

                     // We still need to pass the blob to the Gradio function

                     // Use Gradio's JS API or hidden components if possible

                     // For now, let's use a simple alert and rely on manual trigger

                     alert("Image pasted. The preview should update. Please press 'Predict'.");

                     // Trigger paste_image function - requires Gradio JS interaction

                     // This part is tricky without official Gradio JS API for updates

                 }

            };

            reader.readAsDataURL(blob);

            // Prevent default paste handling

            evt.preventDefault();

            break;

        }

    }

}



document.addEventListener('paste', paste_update);

"""

with gr.Blocks(css=css, js=js) as demo:
    gr.Markdown("# WD EVA02 LoRA ONNX Tagger")
    gr.Markdown("Upload an image or paste an image URL to predict tags using the fine-tuned WD EVA02 Tagger model (ONNX format).")
    gr.Markdown(f"Model Repository: [{REPO_ID}](https://huggingface.co/{REPO_ID})")

    with gr.Row():
        with gr.Column(scale=1):
            # Use elem_id for JS targeting
            image_input = gr.Image(type="pil", label="Input Image", elem_id="input-image")
            # Container for URL paste message
            gr.HTML("<div id='url-input-container'></div>")

            gen_threshold = gr.Slider(minimum=0.0, maximum=1.0, step=0.05, value=0.55, label="General Tag Threshold")
            char_threshold = gr.Slider(minimum=0.0, maximum=1.0, step=0.05, value=0.60, label="Character/Copyright/Artist Tag Threshold")
            output_mode = gr.Radio(choices=["Tags Only", "Tags + Visualization"], value="Tags + Visualization", label="Output Mode")
            predict_button = gr.Button("Predict", variant="primary")

        with gr.Column(scale=1):
            output_tags = gr.Textbox(label="Predicted Tags", lines=10)
            output_visualization = gr.Image(type="pil", label="Prediction Visualization")

    # Examples
    gr.Examples(
        examples=[
            ["https://pbs.twimg.com/media/GpiBUQZawAAetgr.jpg", 0.55, 0.5, "Tags + Visualization"],
            ["https://pbs.twimg.com/media/GooBBQHWcAAJj2q.jpg", 0.5, 0.5, "Tags Only"],
            ["https://m.media-amazon.com/images/I/61FwAqFu4PL.jpg", 0.55, 0.5, "Tags + Visualization"],
            ["https://cdn.donmai.us/sample/5d/ad/__kanae_and_kanae_nijisanji_drawn_by_cococall__sample-5dadca17680ef18c18daaf75507c4b12.jpg", 0.45, 0.45, "Tags + Visualization"]
        ],
        inputs=[image_input, gen_threshold, char_threshold, output_mode],
        outputs=[output_tags, output_visualization],
        fn=predict,
        cache_examples=False # Slows down startup if True and large examples
    )

    predict_button.click(
        fn=predict,
        inputs=[image_input, gen_threshold, char_threshold, output_mode],
        outputs=[output_tags, output_visualization]
    )

    # Add listener for image input changes (e.g., from pasting)
    # This might trigger prediction automatically or require the button click
    # image_input.change(
    #     fn=predict,
    #     inputs=[image_input, gen_threshold, char_threshold, output_mode],
    #     outputs=[output_tags, output_visualization]
    # )


if __name__ == "__main__":
    # 環境変数HF_TOKENがない場合に警告(プライベートリポジトリ用)
    if not os.environ.get("HF_TOKEN"):
        print("Warning: HF_TOKEN environment variable not set. Downloads from private repositories may fail.")
    # Initialize model on startup to avoid delay on first prediction
    initialize_model()
    demo.launch()