|
import gradio as gr |
|
import numpy as np |
|
from PIL import Image |
|
|
|
import json |
|
import os |
|
import io |
|
import requests |
|
import matplotlib.pyplot as plt |
|
import matplotlib |
|
from huggingface_hub import hf_hub_download |
|
from dataclasses import dataclass |
|
from typing import List, Dict, Optional, Tuple |
|
import time |
|
import spaces |
|
import onnxruntime as ort |
|
|
|
import torch |
|
import timm |
|
from safetensors.torch import load_file as safe_load_file |
|
|
|
|
|
|
|
|
|
|
|
@dataclass |
|
class LabelData: |
|
names: list[str] |
|
rating: list[np.int64] |
|
general: list[np.int64] |
|
artist: list[np.int64] |
|
character: list[np.int64] |
|
copyright: list[np.int64] |
|
meta: list[np.int64] |
|
quality: list[np.int64] |
|
|
|
def pil_ensure_rgb(image: Image.Image) -> Image.Image: |
|
if image.mode not in ["RGB", "RGBA"]: |
|
image = image.convert("RGBA") if "transparency" in image.info else image.convert("RGB") |
|
if image.mode == "RGBA": |
|
background = Image.new("RGB", image.size, (255, 255, 255)) |
|
background.paste(image, mask=image.split()[3]) |
|
image = background |
|
return image |
|
|
|
def pil_pad_square(image: Image.Image) -> Image.Image: |
|
width, height = image.size |
|
if width == height: return image |
|
new_size = max(width, height) |
|
new_image = Image.new(image.mode, (new_size, new_size), (255, 255, 255)) |
|
paste_position = ((new_size - width) // 2, (new_size - height) // 2) |
|
new_image.paste(image, paste_position) |
|
return new_image |
|
|
|
def load_tag_mapping(mapping_path): |
|
|
|
with open(mapping_path, 'r', encoding='utf-8') as f: tag_mapping_data = json.load(f) |
|
|
|
if isinstance(tag_mapping_data, dict) and "idx_to_tag" in tag_mapping_data: |
|
idx_to_tag = {int(k): v for k, v in tag_mapping_data["idx_to_tag"].items()} |
|
tag_to_category = tag_mapping_data["tag_to_category"] |
|
elif isinstance(tag_mapping_data, dict): |
|
|
|
try: |
|
tag_mapping_data_int_keys = {int(k): v for k, v in tag_mapping_data.items()} |
|
idx_to_tag = {idx: data['tag'] for idx, data in tag_mapping_data_int_keys.items()} |
|
tag_to_category = {data['tag']: data['category'] for data in tag_mapping_data_int_keys.values()} |
|
except (KeyError, ValueError) as e: |
|
raise ValueError(f"Unsupported tag mapping format (dict): {e}. Expected int keys with 'tag' and 'category'.") |
|
else: |
|
raise ValueError("Unsupported tag mapping format: Expected a dictionary.") |
|
|
|
names = [None] * (max(idx_to_tag.keys()) + 1) |
|
rating, general, artist, character, copyright, meta, quality = [], [], [], [], [], [], [] |
|
for idx, tag in idx_to_tag.items(): |
|
if idx >= len(names): names.extend([None] * (idx - len(names) + 1)) |
|
names[idx] = tag |
|
category = tag_to_category.get(tag, 'Unknown') |
|
idx_int = int(idx) |
|
if category == 'Rating': rating.append(idx_int) |
|
elif category == 'General': general.append(idx_int) |
|
elif category == 'Artist': artist.append(idx_int) |
|
elif category == 'Character': character.append(idx_int) |
|
elif category == 'Copyright': copyright.append(idx_int) |
|
elif category == 'Meta': meta.append(idx_int) |
|
elif category == 'Quality': quality.append(idx_int) |
|
|
|
return LabelData(names=names, rating=np.array(rating, dtype=np.int64), general=np.array(general, dtype=np.int64), artist=np.array(artist, dtype=np.int64), |
|
character=np.array(character, dtype=np.int64), copyright=np.array(copyright, dtype=np.int64), meta=np.array(meta, dtype=np.int64), quality=np.array(quality, dtype=np.int64)), idx_to_tag, tag_to_category |
|
|
|
def preprocess_image(image: Image.Image, target_size=(448, 448)): |
|
|
|
image = pil_ensure_rgb(image) |
|
image = pil_pad_square(image) |
|
image_resized = image.resize(target_size, Image.BICUBIC) |
|
img_array = np.array(image_resized, dtype=np.float32) / 255.0 |
|
img_array = img_array.transpose(2, 0, 1) |
|
|
|
img_array = img_array[::-1, :, :] |
|
mean = np.array([0.5, 0.5, 0.5], dtype=np.float32).reshape(3, 1, 1) |
|
std = np.array([0.5, 0.5, 0.5], dtype=np.float32).reshape(3, 1, 1) |
|
img_array = (img_array - mean) / std |
|
img_array = np.expand_dims(img_array, axis=0) |
|
return image, img_array |
|
|
|
|
|
def get_tags(probs, labels: LabelData, gen_threshold, char_threshold): |
|
result = { |
|
"rating": [], |
|
"general": [], |
|
"character": [], |
|
"copyright": [], |
|
"artist": [], |
|
"meta": [], |
|
"quality": [] |
|
} |
|
|
|
if len(labels.rating) > 0: |
|
|
|
valid_indices = labels.rating[labels.rating < len(probs)] |
|
if len(valid_indices) > 0: |
|
rating_probs = probs[valid_indices] |
|
if len(rating_probs) > 0: |
|
rating_idx_local = np.argmax(rating_probs) |
|
rating_idx_global = valid_indices[rating_idx_local] |
|
|
|
if rating_idx_global < len(labels.names) and labels.names[rating_idx_global] is not None: |
|
rating_name = labels.names[rating_idx_global] |
|
rating_conf = float(rating_probs[rating_idx_local]) |
|
result["rating"].append((rating_name, rating_conf)) |
|
else: |
|
print(f"Warning: Invalid global index {rating_idx_global} for rating tag.") |
|
else: |
|
print("Warning: rating_probs became empty after filtering.") |
|
else: |
|
print("Warning: No valid indices found for rating tags within probs length.") |
|
|
|
|
|
if len(labels.quality) > 0: |
|
valid_indices = labels.quality[labels.quality < len(probs)] |
|
if len(valid_indices) > 0: |
|
quality_probs = probs[valid_indices] |
|
if len(quality_probs) > 0: |
|
quality_idx_local = np.argmax(quality_probs) |
|
quality_idx_global = valid_indices[quality_idx_local] |
|
if quality_idx_global < len(labels.names) and labels.names[quality_idx_global] is not None: |
|
quality_name = labels.names[quality_idx_global] |
|
quality_conf = float(quality_probs[quality_idx_local]) |
|
result["quality"].append((quality_name, quality_conf)) |
|
else: |
|
print(f"Warning: Invalid global index {quality_idx_global} for quality tag.") |
|
else: |
|
print("Warning: quality_probs became empty after filtering.") |
|
else: |
|
print("Warning: No valid indices found for quality tags within probs length.") |
|
|
|
|
|
category_map = { |
|
"general": (labels.general, gen_threshold), |
|
"character": (labels.character, char_threshold), |
|
"copyright": (labels.copyright, char_threshold), |
|
"artist": (labels.artist, char_threshold), |
|
"meta": (labels.meta, gen_threshold) |
|
} |
|
for category, (indices, threshold) in category_map.items(): |
|
if len(indices) > 0: |
|
valid_indices = indices[(indices < len(probs))] |
|
if len(valid_indices) > 0: |
|
category_probs = probs[valid_indices] |
|
mask = category_probs >= threshold |
|
selected_indices_local = np.where(mask)[0] |
|
if len(selected_indices_local) > 0: |
|
selected_indices_global = valid_indices[selected_indices_local] |
|
selected_probs = category_probs[selected_indices_local] |
|
for idx_global, prob_val in zip(selected_indices_global, selected_probs): |
|
|
|
if idx_global < len(labels.names) and labels.names[idx_global] is not None: |
|
result[category].append((labels.names[idx_global], float(prob_val))) |
|
else: |
|
print(f"Warning: Invalid global index {idx_global} for {category} tag.") |
|
|
|
|
|
|
|
|
|
|
|
for k in result: |
|
result[k] = sorted(result[k], key=lambda x: x[1], reverse=True) |
|
return result |
|
|
|
|
|
def visualize_predictions(image: Image.Image, predictions: Dict, threshold: float): |
|
|
|
filtered_meta = [] |
|
excluded_meta_patterns = ['id', 'commentary', 'request', 'mismatch'] |
|
for tag, prob in predictions.get("meta", []): |
|
if not any(pattern in tag.lower() for pattern in excluded_meta_patterns): |
|
filtered_meta.append((tag, prob)) |
|
predictions["meta"] = filtered_meta |
|
|
|
|
|
plt.rcParams['font.family'] = 'DejaVu Sans' |
|
fig = plt.figure(figsize=(8, 12), dpi=100) |
|
ax_tags = fig.add_subplot(1, 1, 1) |
|
|
|
all_tags, all_probs, all_colors = [], [], [] |
|
color_map = { |
|
'rating': 'red', 'character': 'blue', 'copyright': 'purple', |
|
'artist': 'orange', 'general': 'green', 'meta': 'gray', 'quality': 'yellow' |
|
} |
|
|
|
|
|
for cat, prefix, color in [ |
|
('rating', 'R', color_map['rating']), ('quality', 'Q', color_map['quality']), |
|
('character', 'C', color_map['character']), ('copyright', '©', color_map['copyright']), |
|
('artist', 'A', color_map['artist']), ('general', 'G', color_map['general']), |
|
('meta', 'M', color_map['meta']) |
|
]: |
|
sorted_tags = sorted(predictions.get(cat, []), key=lambda x: x[1], reverse=True) |
|
for tag, prob in sorted_tags: |
|
all_tags.append(f"[{prefix}] {tag.replace('_', ' ')}") |
|
all_probs.append(prob) |
|
all_colors.append(color) |
|
|
|
if not all_tags: |
|
ax_tags.text(0.5, 0.5, "No tags found above threshold", ha='center', va='center') |
|
ax_tags.set_title(f"Tags (Threshold ≳ {threshold:.2f})") |
|
ax_tags.axis('off') |
|
else: |
|
sorted_indices = sorted(range(len(all_probs)), key=lambda i: all_probs[i]) |
|
all_tags = [all_tags[i] for i in sorted_indices] |
|
all_probs = [all_probs[i] for i in sorted_indices] |
|
all_colors = [all_colors[i] for i in sorted_indices] |
|
|
|
num_tags = len(all_tags) |
|
bar_height = min(0.8, max(0.1, 0.8 * (30 / num_tags))) if num_tags > 30 else 0.8 |
|
y_positions = np.arange(num_tags) |
|
|
|
bars = ax_tags.barh(y_positions, all_probs, height=bar_height, color=all_colors) |
|
ax_tags.set_yticks(y_positions) |
|
ax_tags.set_yticklabels(all_tags) |
|
|
|
fontsize = 10 if num_tags <= 40 else 8 if num_tags <= 60 else 6 |
|
for lbl in ax_tags.get_yticklabels(): |
|
lbl.set_fontsize(fontsize) |
|
|
|
for i, (bar, prob) in enumerate(zip(bars, all_probs)): |
|
text_x = min(prob + 0.02, 0.98) |
|
ax_tags.text(text_x, y_positions[i], f"{prob:.3f}", va='center', fontsize=fontsize) |
|
|
|
ax_tags.set_xlim(0, 1) |
|
ax_tags.set_title(f"Tags (Threshold ≳ {threshold:.2f})") |
|
|
|
from matplotlib.patches import Patch |
|
legend_elements = [ |
|
Patch(facecolor=color, label=cat.capitalize()) |
|
for cat, color in color_map.items() |
|
if any(t.startswith(f"[{cat[0].upper() if cat!='copyright' else '©'}]") for t in all_tags) |
|
] |
|
if legend_elements: |
|
ax_tags.legend(handles=legend_elements, loc='lower right', fontsize=8) |
|
|
|
plt.tight_layout() |
|
buf = io.BytesIO() |
|
plt.savefig(buf, format='png', dpi=100) |
|
plt.close(fig) |
|
buf.seek(0) |
|
return Image.open(buf) |
|
|
|
|
|
REPO_ID = "celstk/wd-eva02-lora-onnx" |
|
|
|
MODEL_OPTIONS = { |
|
"cl_eva02_tagger_v1_250426": "cl_eva02_tagger_v1_250426/model.onnx", |
|
"cl_eva02_tagger_v1_250427": "cl_eva02_tagger_v1_250427/model.onnx", |
|
"cl_eva02_tagger_v1_250430": "cl_eva02_tagger_v1_250430/model.onnx", |
|
"cl_eva02_tagger_v1_250502": "cl_eva02_tagger_v1_250503/model.onnx", |
|
"cl_eva02_tagger_v1_250504": "cl_eva02_tagger_v1_250504/model.onnx", |
|
"cl_eva02_tagger_v1_250509": "cl_eva02_tagger_v1_250509/model.onnx", |
|
"cl_eva02_tagger_v1_250511": "cl_eva02_tagger_v1_250511/model.onnx", |
|
"cl_eva02_tagger_v1_250512": "cl_eva02_tagger_v1_250512/model.onnx", |
|
"cl_eva02_tagger_v1_250513": "cl_eva02_tagger_v1_250513/model.onnx", |
|
"cl_eva02_tagger_v1_250515": "cl_eva02_tagger_v1_250515/model.onnx" |
|
} |
|
DEFAULT_MODEL = "cl_eva02_tagger_v1_250515" |
|
CACHE_DIR = "./model_cache" |
|
|
|
|
|
g_onnx_model_path = None |
|
g_tag_mapping_path = None |
|
g_labels_data = None |
|
g_idx_to_tag = None |
|
g_tag_to_category = None |
|
g_current_model = None |
|
|
|
|
|
def initialize_onnx_paths(model_choice=DEFAULT_MODEL): |
|
global g_onnx_model_path, g_tag_mapping_path, g_labels_data, g_idx_to_tag, g_tag_to_category, g_current_model |
|
|
|
if not model_choice in MODEL_OPTIONS: |
|
print(f"Invalid model choice: {model_choice}, falling back to default: {DEFAULT_MODEL}") |
|
model_choice = DEFAULT_MODEL |
|
|
|
g_current_model = model_choice |
|
model_dir = model_choice |
|
onnx_filename = MODEL_OPTIONS[model_choice] |
|
tag_mapping_filename = f"{model_dir}/tag_mapping.json" |
|
|
|
print(f"Initializing ONNX paths and labels for model: {model_choice}...") |
|
hf_token = os.environ.get("HF_TOKEN") |
|
try: |
|
print(f"Attempting to download ONNX model: {onnx_filename}") |
|
g_onnx_model_path = hf_hub_download(repo_id=REPO_ID, filename=onnx_filename, cache_dir=CACHE_DIR, token=hf_token, force_download=False) |
|
print(f"ONNX model path: {g_onnx_model_path}") |
|
|
|
print(f"Attempting to download Tag mapping: {tag_mapping_filename}") |
|
g_tag_mapping_path = hf_hub_download(repo_id=REPO_ID, filename=tag_mapping_filename, cache_dir=CACHE_DIR, token=hf_token, force_download=False) |
|
print(f"Tag mapping path: {g_tag_mapping_path}") |
|
|
|
print("Loading labels from mapping...") |
|
g_labels_data, g_idx_to_tag, g_tag_to_category = load_tag_mapping(g_tag_mapping_path) |
|
print(f"Labels loaded. Count: {len(g_labels_data.names)}") |
|
|
|
return True |
|
|
|
except Exception as e: |
|
print(f"Error during initialization: {e}") |
|
import traceback; traceback.print_exc() |
|
|
|
g_onnx_model_path = None |
|
g_tag_mapping_path = None |
|
g_labels_data = None |
|
g_idx_to_tag = None |
|
g_tag_to_category = None |
|
g_current_model = None |
|
|
|
raise gr.Error(f"Initialization failed: {e}. Check logs and HF_TOKEN.") |
|
|
|
|
|
def change_model(model_choice): |
|
try: |
|
success = initialize_onnx_paths(model_choice) |
|
if success: |
|
return f"Model changed to: {model_choice}" |
|
else: |
|
return "Failed to change model. See logs for details." |
|
except Exception as e: |
|
return f"Error changing model: {str(e)}" |
|
|
|
|
|
@spaces.GPU() |
|
def predict_onnx(image_input, model_choice, gen_threshold, char_threshold, output_mode): |
|
print(f"--- predict_onnx function started (GPU worker) with model {model_choice} ---") |
|
|
|
|
|
global g_current_model |
|
if g_current_model != model_choice: |
|
print(f"Model mismatch! Current: {g_current_model}, Selected: {model_choice}. Reinitializing...") |
|
try: |
|
initialize_onnx_paths(model_choice) |
|
except Exception as e: |
|
return f"Error initializing model '{model_choice}': {str(e)}", None |
|
|
|
|
|
if g_onnx_model_path is None or g_labels_data is None: |
|
message = "Error: Paths or labels not initialized. Check startup logs." |
|
print(message) |
|
|
|
return message, None |
|
|
|
|
|
session = None |
|
try: |
|
print(f"Loading ONNX session from: {g_onnx_model_path}") |
|
available_providers = ort.get_available_providers() |
|
providers = [] |
|
if 'CUDAExecutionProvider' in available_providers: |
|
providers.append('CUDAExecutionProvider') |
|
providers.append('CPUExecutionProvider') |
|
print(f"Attempting to load session with providers: {providers}") |
|
session = ort.InferenceSession(g_onnx_model_path, providers=providers) |
|
print(f"ONNX session loaded using: {session.get_providers()[0]}") |
|
except Exception as e: |
|
message = f"Error loading ONNX session in worker: {e}" |
|
print(message) |
|
import traceback; traceback.print_exc() |
|
return message, None |
|
|
|
|
|
if image_input is None: |
|
return "Please upload an image.", None |
|
|
|
print(f"Processing image with thresholds: gen={gen_threshold}, char={char_threshold}") |
|
try: |
|
|
|
if isinstance(image_input, str): |
|
if image_input.startswith("http"): |
|
response = requests.get(image_input, timeout=10) |
|
response.raise_for_status() |
|
image = Image.open(io.BytesIO(response.content)) |
|
elif os.path.exists(image_input): |
|
image = Image.open(image_input) |
|
else: |
|
raise ValueError(f"Invalid image input string: {image_input}") |
|
elif isinstance(image_input, np.ndarray): |
|
image = Image.fromarray(image_input) |
|
elif isinstance(image_input, Image.Image): |
|
image = image_input |
|
else: |
|
raise TypeError(f"Unsupported image input type: {type(image_input)}") |
|
|
|
|
|
original_pil_image, input_tensor = preprocess_image(image) |
|
|
|
|
|
|
|
input_tensor = input_tensor.astype(np.float32) |
|
|
|
except Exception as e: |
|
message = f"Error processing input image: {e}" |
|
print(message) |
|
return message, None |
|
|
|
|
|
try: |
|
input_name = session.get_inputs()[0].name |
|
output_name = session.get_outputs()[0].name |
|
print(f"Running inference with input '{input_name}', output '{output_name}'") |
|
start_time = time.time() |
|
outputs = session.run([output_name], {input_name: input_tensor})[0] |
|
inference_time = time.time() - start_time |
|
print(f"Inference completed in {inference_time:.3f} seconds") |
|
|
|
|
|
if np.isnan(outputs).any() or np.isinf(outputs).any(): |
|
print("Warning: NaN or Inf detected in model output. Clamping...") |
|
outputs = np.nan_to_num(outputs, nan=0.0, posinf=1.0, neginf=0.0) |
|
|
|
|
|
|
|
def stable_sigmoid(x): |
|
return 1 / (1 + np.exp(-np.clip(x, -30, 30))) |
|
probs = stable_sigmoid(outputs[0]) |
|
|
|
except Exception as e: |
|
message = f"Error during ONNX inference: {e}" |
|
print(message) |
|
import traceback; traceback.print_exc() |
|
return message, None |
|
finally: |
|
|
|
del session |
|
|
|
|
|
try: |
|
print("Post-processing results...") |
|
|
|
predictions = get_tags(probs, g_labels_data, gen_threshold, char_threshold) |
|
|
|
|
|
output_tags = [] |
|
if predictions.get("rating"): output_tags.append(predictions["rating"][0][0].replace("_", " ")) |
|
if predictions.get("quality"): output_tags.append(predictions["quality"][0][0].replace("_", " ")) |
|
|
|
for category in ["artist", "character", "copyright", "general", "meta"]: |
|
tags_in_category = predictions.get(category, []) |
|
for tag, prob in tags_in_category: |
|
|
|
if category == "meta" and any(p in tag.lower() for p in ['id', 'commentary', 'request', 'mismatch']): |
|
continue |
|
output_tags.append(tag.replace("_", " ")) |
|
output_text = ", ".join(output_tags) |
|
|
|
|
|
viz_image = None |
|
if output_mode == "Tags + Visualization": |
|
print("Generating visualization...") |
|
|
|
|
|
viz_image = visualize_predictions(original_pil_image, predictions, gen_threshold) |
|
print("Visualization generated.") |
|
else: |
|
print("Visualization skipped.") |
|
|
|
print("Prediction complete.") |
|
return output_text, viz_image |
|
|
|
except Exception as e: |
|
message = f"Error during post-processing: {e}" |
|
print(message) |
|
import traceback; traceback.print_exc() |
|
return message, None |
|
|
|
|
|
css = """ |
|
.gradio-container { font-family: 'IBM Plex Sans', sans-serif; } |
|
footer { display: none !important; } |
|
.gr-prose { max-width: 100% !important; } |
|
""" |
|
|
|
|
|
with gr.Blocks(css=css) as demo: |
|
gr.Markdown("# CL EVA02 ONNX Tagger") |
|
gr.Markdown("Upload an image or paste an image URL to predict tags using the CL EVA02 Tagger model (ONNX), fine-tuned from [SmilingWolf/wd-eva02-large-tagger-v3](https://huggingface.co/SmilingWolf/wd-eva02-large-tagger-v3).") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
image_input = gr.Image(type="pil", label="Input Image", elem_id="input-image") |
|
model_choice = gr.Dropdown( |
|
choices=list(MODEL_OPTIONS.keys()), |
|
value=DEFAULT_MODEL, |
|
label="Model Version", |
|
interactive=True |
|
) |
|
gen_threshold = gr.Slider(minimum=0.0, maximum=1.0, step=0.05, value=0.55, label="General/Meta Tag Threshold") |
|
char_threshold = gr.Slider(minimum=0.0, maximum=1.0, step=0.05, value=0.60, label="Character/Copyright/Artist Tag Threshold") |
|
output_mode = gr.Radio(choices=["Tags Only", "Tags + Visualization"], value="Tags + Visualization", label="Output Mode") |
|
predict_button = gr.Button("Predict", variant="primary") |
|
with gr.Column(scale=1): |
|
output_tags = gr.Textbox(label="Predicted Tags", lines=10, interactive=False) |
|
output_visualization = gr.Image(type="pil", label="Prediction Visualization", interactive=False) |
|
|
|
|
|
model_status = gr.Textbox(label="Model Status", interactive=False, visible=False) |
|
model_choice.change( |
|
fn=change_model, |
|
inputs=[model_choice], |
|
outputs=[model_status] |
|
) |
|
|
|
gr.Examples( |
|
examples=[ |
|
["https://pbs.twimg.com/media/GXBXsRvbQAAg1kp.jpg", DEFAULT_MODEL, 0.55, 0.70, "Tags + Visualization"], |
|
["https://pbs.twimg.com/media/GjlX0gibcAA4EJ4.jpg", DEFAULT_MODEL, 0.55, 0.70, "Tags Only"], |
|
["https://pbs.twimg.com/media/Gj4nQbjbEAATeoH.jpg", DEFAULT_MODEL, 0.55, 0.70, "Tags + Visualization"], |
|
["https://pbs.twimg.com/media/GkbtX0GaoAMlUZt.jpg", DEFAULT_MODEL, 0.55, 0.70, "Tags + Visualization"] |
|
], |
|
inputs=[image_input, model_choice, gen_threshold, char_threshold, output_mode], |
|
outputs=[output_tags, output_visualization], |
|
fn=predict_onnx, |
|
cache_examples=False |
|
) |
|
predict_button.click( |
|
fn=predict_onnx, |
|
inputs=[image_input, model_choice, gen_threshold, char_threshold, output_mode], |
|
outputs=[output_tags, output_visualization] |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
if not os.environ.get("HF_TOKEN"): print("Warning: HF_TOKEN environment variable not set.") |
|
|
|
initialize_onnx_paths(DEFAULT_MODEL) |
|
|
|
demo.launch(share=True) |
|
|