Spaces:
Running
on
Zero
Running
on
Zero
Update README.md
Browse files
README.md
CHANGED
@@ -1,35 +1,35 @@
|
|
1 |
-
---
|
2 |
-
title: WD EVA02 LoRA ONNX Tagger
|
3 |
-
emoji: 🖼️
|
4 |
-
colorFrom: blue
|
5 |
-
colorTo: green
|
6 |
-
sdk: gradio
|
7 |
-
sdk_version: 4.
|
8 |
-
app_file: app.py
|
9 |
-
license: apache-2.0 # Or your preferred license
|
10 |
-
# Hardware Selection:
|
11 |
-
# For CPU execution (recommended if GPU isn't strictly needed):
|
12 |
-
# hardware: cpu-upgrade
|
13 |
-
# For GPU execution (requires compatible CUDA setup):
|
14 |
-
# hardware: cuda-t4-small
|
15 |
-
|
16 |
-
# hf_token: YOUR_HF_TOKEN # Use secrets instead!
|
17 |
-
---
|
18 |
-
|
19 |
-
# WD EVA02 LoRA ONNX Tagger
|
20 |
-
|
21 |
-
This Space demonstrates image tagging using a fine-tuned WD EVA02 model (converted to ONNX format).
|
22 |
-
|
23 |
-
Model Repository: [celstk/wd-eva02-lora-onnx](https://huggingface.co/celstk/wd-eva02-lora-onnx)
|
24 |
-
|
25 |
-
**How to Use:**
|
26 |
-
1. Upload an image using the upload button.
|
27 |
-
2. Alternatively, paste an image URL into the browser (experimental paste handling).
|
28 |
-
3. Adjust the tag thresholds if needed.
|
29 |
-
4. Choose the output mode (Tags only or include visualization).
|
30 |
-
5. Click the "Predict" button.
|
31 |
-
|
32 |
-
**Note:**
|
33 |
-
- This Space uses a model from a **private** repository (`celstk/wd-eva02-lora-onnx`). You might need to duplicate this space and add your Hugging Face token (`HF_TOKEN`) to the Space secrets to allow downloading the model files.
|
34 |
-
- Image pasting behavior might vary across browsers.
|
35 |
- If you require GPU acceleration, uncomment the `hardware: cuda-t4-small` line above and ensure the environment has the necessary CUDA libraries compatible with `onnxruntime-gpu`. The current setup defaults to CPU due to potential CUDA library mismatches in the standard Spaces environment.
|
|
|
1 |
+
---
|
2 |
+
title: WD EVA02 LoRA ONNX Tagger
|
3 |
+
emoji: 🖼️
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: green
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 4.43.0 # Updated Gradio SDK version
|
8 |
+
app_file: app.py
|
9 |
+
license: apache-2.0 # Or your preferred license
|
10 |
+
# Hardware Selection:
|
11 |
+
# For CPU execution (recommended if GPU isn't strictly needed):
|
12 |
+
# hardware: cpu-upgrade
|
13 |
+
# For GPU execution (requires compatible CUDA setup):
|
14 |
+
# hardware: cuda-t4-small
|
15 |
+
pinned: false # Set to true if you want to pin the hardware
|
16 |
+
# hf_token: YOUR_HF_TOKEN # Use secrets instead!
|
17 |
+
---
|
18 |
+
|
19 |
+
# WD EVA02 LoRA ONNX Tagger
|
20 |
+
|
21 |
+
This Space demonstrates image tagging using a fine-tuned WD EVA02 model (converted to ONNX format).
|
22 |
+
|
23 |
+
Model Repository: [celstk/wd-eva02-lora-onnx](https://huggingface.co/celstk/wd-eva02-lora-onnx)
|
24 |
+
|
25 |
+
**How to Use:**
|
26 |
+
1. Upload an image using the upload button.
|
27 |
+
2. Alternatively, paste an image URL into the browser (experimental paste handling).
|
28 |
+
3. Adjust the tag thresholds if needed.
|
29 |
+
4. Choose the output mode (Tags only or include visualization).
|
30 |
+
5. Click the "Predict" button.
|
31 |
+
|
32 |
+
**Note:**
|
33 |
+
- This Space uses a model from a **private** repository (`celstk/wd-eva02-lora-onnx`). You might need to duplicate this space and add your Hugging Face token (`HF_TOKEN`) to the Space secrets to allow downloading the model files.
|
34 |
+
- Image pasting behavior might vary across browsers.
|
35 |
- If you require GPU acceleration, uncomment the `hardware: cuda-t4-small` line above and ensure the environment has the necessary CUDA libraries compatible with `onnxruntime-gpu`. The current setup defaults to CPU due to potential CUDA library mismatches in the standard Spaces environment.
|