cella110n commited on
Commit
4985d93
·
verified ·
1 Parent(s): d3d1e1d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +34 -34
README.md CHANGED
@@ -1,35 +1,35 @@
1
- ---
2
- title: WD EVA02 LoRA ONNX Tagger
3
- emoji: 🖼️
4
- colorFrom: blue
5
- colorTo: green
6
- sdk: gradio
7
- sdk_version: 4.433.0 # Updated Gradio SDK version
8
- app_file: app.py
9
- license: apache-2.0 # Or your preferred license
10
- # Hardware Selection:
11
- # For CPU execution (recommended if GPU isn't strictly needed):
12
- # hardware: cpu-upgrade
13
- # For GPU execution (requires compatible CUDA setup):
14
- # hardware: cuda-t4-small
15
- # pinned: false # Set to true if you want to pin the hardware
16
- # hf_token: YOUR_HF_TOKEN # Use secrets instead!
17
- ---
18
-
19
- # WD EVA02 LoRA ONNX Tagger
20
-
21
- This Space demonstrates image tagging using a fine-tuned WD EVA02 model (converted to ONNX format).
22
-
23
- Model Repository: [celstk/wd-eva02-lora-onnx](https://huggingface.co/celstk/wd-eva02-lora-onnx)
24
-
25
- **How to Use:**
26
- 1. Upload an image using the upload button.
27
- 2. Alternatively, paste an image URL into the browser (experimental paste handling).
28
- 3. Adjust the tag thresholds if needed.
29
- 4. Choose the output mode (Tags only or include visualization).
30
- 5. Click the "Predict" button.
31
-
32
- **Note:**
33
- - This Space uses a model from a **private** repository (`celstk/wd-eva02-lora-onnx`). You might need to duplicate this space and add your Hugging Face token (`HF_TOKEN`) to the Space secrets to allow downloading the model files.
34
- - Image pasting behavior might vary across browsers.
35
  - If you require GPU acceleration, uncomment the `hardware: cuda-t4-small` line above and ensure the environment has the necessary CUDA libraries compatible with `onnxruntime-gpu`. The current setup defaults to CPU due to potential CUDA library mismatches in the standard Spaces environment.
 
1
+ ---
2
+ title: WD EVA02 LoRA ONNX Tagger
3
+ emoji: 🖼️
4
+ colorFrom: blue
5
+ colorTo: green
6
+ sdk: gradio
7
+ sdk_version: 4.43.0 # Updated Gradio SDK version
8
+ app_file: app.py
9
+ license: apache-2.0 # Or your preferred license
10
+ # Hardware Selection:
11
+ # For CPU execution (recommended if GPU isn't strictly needed):
12
+ # hardware: cpu-upgrade
13
+ # For GPU execution (requires compatible CUDA setup):
14
+ # hardware: cuda-t4-small
15
+ pinned: false # Set to true if you want to pin the hardware
16
+ # hf_token: YOUR_HF_TOKEN # Use secrets instead!
17
+ ---
18
+
19
+ # WD EVA02 LoRA ONNX Tagger
20
+
21
+ This Space demonstrates image tagging using a fine-tuned WD EVA02 model (converted to ONNX format).
22
+
23
+ Model Repository: [celstk/wd-eva02-lora-onnx](https://huggingface.co/celstk/wd-eva02-lora-onnx)
24
+
25
+ **How to Use:**
26
+ 1. Upload an image using the upload button.
27
+ 2. Alternatively, paste an image URL into the browser (experimental paste handling).
28
+ 3. Adjust the tag thresholds if needed.
29
+ 4. Choose the output mode (Tags only or include visualization).
30
+ 5. Click the "Predict" button.
31
+
32
+ **Note:**
33
+ - This Space uses a model from a **private** repository (`celstk/wd-eva02-lora-onnx`). You might need to duplicate this space and add your Hugging Face token (`HF_TOKEN`) to the Space secrets to allow downloading the model files.
34
+ - Image pasting behavior might vary across browsers.
35
  - If you require GPU acceleration, uncomment the `hardware: cuda-t4-small` line above and ensure the environment has the necessary CUDA libraries compatible with `onnxruntime-gpu`. The current setup defaults to CPU due to potential CUDA library mismatches in the standard Spaces environment.