Upload app.py
Browse files
app.py
CHANGED
@@ -15,8 +15,8 @@ import time
|
|
15 |
import spaces # Required for @spaces.GPU
|
16 |
|
17 |
import torch # Keep torch for device check in Tagger
|
18 |
-
|
19 |
-
|
20 |
|
21 |
# MatplotlibのバックエンドをAggに設定 (Keep commented out for now)
|
22 |
# matplotlib.use('Agg')
|
@@ -67,7 +67,7 @@ SAFETENSORS_FILENAME = "lora_model_0426/checkpoint_epoch_4.safetensors"
|
|
67 |
METADATA_FILENAME = "lora_model_0426/checkpoint_epoch_4_metadata.json"
|
68 |
TAG_MAPPING_FILENAME = "lora_model_0426/tag_mapping.json"
|
69 |
CACHE_DIR = "./model_cache"
|
70 |
-
|
71 |
|
72 |
# --- Tagger Class ---
|
73 |
class Tagger:
|
@@ -155,21 +155,83 @@ class Tagger:
|
|
155 |
else:
|
156 |
print("Labels already loaded.")
|
157 |
|
158 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
@spaces.GPU()
|
160 |
-
def
|
161 |
-
|
162 |
-
|
163 |
-
#
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
|
174 |
# Instantiate the tagger class (this will download files/load labels)
|
175 |
tagger = Tagger()
|
@@ -177,18 +239,28 @@ tagger = Tagger()
|
|
177 |
# --- Gradio Interface Definition (Minimal) ---
|
178 |
with gr.Blocks() as demo:
|
179 |
gr.Markdown("""
|
180 |
-
# Tagger Initialization +
|
181 |
-
Instantiates Tagger, then click the button below to
|
182 |
-
Check logs for Tagger initialization messages.
|
183 |
""")
|
184 |
with gr.Column():
|
185 |
-
|
|
|
186 |
output_text = gr.Textbox(label="Output")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
|
188 |
test_button.click(
|
189 |
-
fn=tagger.
|
190 |
-
inputs
|
191 |
-
|
|
|
|
|
192 |
)
|
193 |
|
194 |
# --- Main Block ---
|
|
|
15 |
import spaces # Required for @spaces.GPU
|
16 |
|
17 |
import torch # Keep torch for device check in Tagger
|
18 |
+
import timm # Restore timm
|
19 |
+
from safetensors.torch import load_file as safe_load_file # Restore safetensors loading
|
20 |
|
21 |
# MatplotlibのバックエンドをAggに設定 (Keep commented out for now)
|
22 |
# matplotlib.use('Agg')
|
|
|
67 |
METADATA_FILENAME = "lora_model_0426/checkpoint_epoch_4_metadata.json"
|
68 |
TAG_MAPPING_FILENAME = "lora_model_0426/tag_mapping.json"
|
69 |
CACHE_DIR = "./model_cache"
|
70 |
+
BASE_MODEL_NAME = 'eva02_large_patch14_448.mim_m38m_ft_in1k' # Restore base model name
|
71 |
|
72 |
# --- Tagger Class ---
|
73 |
class Tagger:
|
|
|
155 |
else:
|
156 |
print("Labels already loaded.")
|
157 |
|
158 |
+
# Restore model loading function
|
159 |
+
def _load_model_on_gpu(self):
|
160 |
+
# Only load if not already loaded on the correct device
|
161 |
+
if self.model is not None and next(self.model.parameters()).device == self.device:
|
162 |
+
print("Model already loaded on the correct device.")
|
163 |
+
return True # Indicate success
|
164 |
+
|
165 |
+
print("Loading PyTorch model for GPU worker...")
|
166 |
+
if not self.safetensors_path or not self.labels_data:
|
167 |
+
print("Error: Model paths or labels not initialized before loading.")
|
168 |
+
return False # Indicate failure
|
169 |
+
try:
|
170 |
+
num_classes = len(self.labels_data.names)
|
171 |
+
if num_classes <= 0: raise ValueError(f"Invalid num_classes: {num_classes}")
|
172 |
+
print(f"Creating base model: {BASE_MODEL_NAME} with {num_classes} classes")
|
173 |
+
# Load model structure (without pretrained weights initially if possible, or handle mismatch)
|
174 |
+
# Using pretrained=True might download weights we immediately overwrite
|
175 |
+
model = timm.create_model(BASE_MODEL_NAME, pretrained=True, num_classes=num_classes)
|
176 |
+
|
177 |
+
print(f"Loading state dict from: {self.safetensors_path}")
|
178 |
+
if not os.path.exists(self.safetensors_path): raise FileNotFoundError(f"File not found: {self.safetensors_path}")
|
179 |
+
state_dict = safe_load_file(self.safetensors_path)
|
180 |
+
|
181 |
+
# --- Key Adaptation Logic (Important!) ---
|
182 |
+
# Assuming direct match based on previous code structure
|
183 |
+
adapted_state_dict = state_dict
|
184 |
+
# Example if keys were prefixed with 'base_model.':
|
185 |
+
# adapted_state_dict = {k.replace('base_model.', ''): v for k, v in state_dict.items()}
|
186 |
+
# -----------------------------------------
|
187 |
+
|
188 |
+
print("Loading state dict into model...")
|
189 |
+
missing_keys, unexpected_keys = model.load_state_dict(adapted_state_dict, strict=False)
|
190 |
+
# Only print if there are actually missing/unexpected keys
|
191 |
+
if missing_keys: print(f"State dict loaded. Missing keys: {missing_keys}")
|
192 |
+
if unexpected_keys: print(f"State dict loaded. Unexpected keys: {unexpected_keys}")
|
193 |
+
if any(k.startswith('head.') for k in missing_keys): print("Warning: Head weights seem missing/mismatched!")
|
194 |
+
|
195 |
+
print(f"Moving model to device: {self.device}")
|
196 |
+
model.to(self.device)
|
197 |
+
model.eval()
|
198 |
+
self.model = model # Store loaded model
|
199 |
+
print("Model loaded successfully on GPU worker.")
|
200 |
+
return True # Indicate success
|
201 |
+
except Exception as e:
|
202 |
+
print(f"(Worker) Error loading PyTorch model: {e}")
|
203 |
+
import traceback; print(traceback.format_exc())
|
204 |
+
# raise gr.Error(f"Error loading PyTorch model: {e}") # Don't raise here, return status
|
205 |
+
return False # Indicate failure
|
206 |
+
|
207 |
+
# Restore predict_on_gpu, but modify it to ONLY test model loading
|
208 |
@spaces.GPU()
|
209 |
+
def predict_on_gpu(self, image_input, gen_threshold, char_threshold, output_mode):
|
210 |
+
print("--- predict_on_gpu function started (GPU worker - TESTING MODEL LOAD) ---")
|
211 |
+
|
212 |
+
# Attempt to load the model
|
213 |
+
load_success = self._load_model_on_gpu()
|
214 |
+
|
215 |
+
if load_success:
|
216 |
+
message = "Model loading successful on GPU worker."
|
217 |
+
print(message)
|
218 |
+
# Optional: Check model device again after loading
|
219 |
+
if self.model is not None:
|
220 |
+
print(f"Model device after load: {next(self.model.parameters()).device}")
|
221 |
+
else:
|
222 |
+
print("Model object is None even after successful load reported?")
|
223 |
+
else:
|
224 |
+
message = "Error: Model could not be loaded on GPU worker. Check logs."
|
225 |
+
print(message)
|
226 |
+
|
227 |
+
# Return only the status message for this test, and None for the image output
|
228 |
+
return message, None
|
229 |
+
|
230 |
+
# --- Original prediction logic (commented out for this test) ---
|
231 |
+
# if self.model is None:
|
232 |
+
# return "Error: Model could not be loaded on GPU worker.", None
|
233 |
+
# if image_input is None: return "Please upload an image.", None
|
234 |
+
# ... (image loading, preprocessing, inference, postprocessing) ...
|
235 |
|
236 |
# Instantiate the tagger class (this will download files/load labels)
|
237 |
tagger = Tagger()
|
|
|
239 |
# --- Gradio Interface Definition (Minimal) ---
|
240 |
with gr.Blocks() as demo:
|
241 |
gr.Markdown("""
|
242 |
+
# Tagger Initialization + Model Load Test
|
243 |
+
Instantiates Tagger, then click the button below to attempt loading the model via `@spaces.GPU`.
|
244 |
+
Check logs for Tagger initialization and model loading messages.
|
245 |
""")
|
246 |
with gr.Column():
|
247 |
+
# Keep using the same button name for simplicity for now
|
248 |
+
test_button = gr.Button("Test Model Load on GPU")
|
249 |
output_text = gr.Textbox(label="Output")
|
250 |
+
# Add dummy components to match the signature of the real predict_on_gpu eventually
|
251 |
+
# These won't be used by the button click directly but might be needed if we switch fn later
|
252 |
+
dummy_image = gr.Image(visible=False) # Hidden image input
|
253 |
+
dummy_gen_slider = gr.Slider(minimum=0.0, maximum=1.0, value=0.55, visible=False)
|
254 |
+
dummy_char_slider = gr.Slider(minimum=0.0, maximum=1.0, value=0.60, visible=False)
|
255 |
+
dummy_radio = gr.Radio(choices=["Tags Only", "Tags + Visualization"], value="Tags + Visualization", visible=False)
|
256 |
+
dummy_vis_output = gr.Image(visible=False) # Hidden image output
|
257 |
|
258 |
test_button.click(
|
259 |
+
fn=tagger.predict_on_gpu,
|
260 |
+
# Provide dummy inputs matching the function signature
|
261 |
+
# We only care about the first output (text) for this test
|
262 |
+
inputs=[dummy_image, dummy_gen_slider, dummy_char_slider, dummy_radio],
|
263 |
+
outputs=[output_text, dummy_vis_output] # Map outputs
|
264 |
)
|
265 |
|
266 |
# --- Main Block ---
|