Spaces:
Running
on
Zero
Running
on
Zero
Upload app.py
Browse files
app.py
CHANGED
@@ -286,8 +286,8 @@ def visualize_predictions(image: Image.Image, predictions, threshold=0.45):
|
|
286 |
|
287 |
# 定数
|
288 |
REPO_ID = "cella110n/cl_tagger"
|
289 |
-
MODEL_FILENAME = "cl_eva02_tagger_v1_250426/model_optimized.onnx"
|
290 |
-
|
291 |
TAG_MAPPING_FILENAME = "cl_eva02_tagger_v1_250426/tag_mapping.json"
|
292 |
CACHE_DIR = "./model_cache"
|
293 |
|
@@ -323,6 +323,35 @@ def initialize_model():
|
|
323 |
if onnx_session is None:
|
324 |
model_path, tag_mapping_path = download_model_files()
|
325 |
print("Loading model and labels...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
326 |
# ONNXセッションの初期化 (GPU優先)
|
327 |
available_providers = ort.get_available_providers()
|
328 |
print(f"Available ONNX Runtime providers: {available_providers}")
|
|
|
286 |
|
287 |
# 定数
|
288 |
REPO_ID = "cella110n/cl_tagger"
|
289 |
+
# MODEL_FILENAME = "cl_eva02_tagger_v1_250426/model_optimized.onnx"
|
290 |
+
MODEL_FILENAME = "cl_eva02_tagger_v1_250426/model.onnx" # Use non-optimized if needed
|
291 |
TAG_MAPPING_FILENAME = "cl_eva02_tagger_v1_250426/tag_mapping.json"
|
292 |
CACHE_DIR = "./model_cache"
|
293 |
|
|
|
323 |
if onnx_session is None:
|
324 |
model_path, tag_mapping_path = download_model_files()
|
325 |
print("Loading model and labels...")
|
326 |
+
|
327 |
+
# --- Added Logging ---
|
328 |
+
print("--- Environment Check ---")
|
329 |
+
try:
|
330 |
+
import torch
|
331 |
+
print(f"PyTorch version: {torch.__version__}")
|
332 |
+
if torch.cuda.is_available():
|
333 |
+
print(f"PyTorch CUDA available: True")
|
334 |
+
print(f"PyTorch CUDA version: {torch.version.cuda}")
|
335 |
+
print(f"Detected GPU: {torch.cuda.get_device_name(0)}")
|
336 |
+
if torch.backends.cudnn.is_available():
|
337 |
+
print(f"PyTorch cuDNN available: True")
|
338 |
+
print(f"PyTorch cuDNN version: {torch.backends.cudnn.version()}")
|
339 |
+
else:
|
340 |
+
print("PyTorch cuDNN available: False")
|
341 |
+
else:
|
342 |
+
print("PyTorch CUDA available: False")
|
343 |
+
except ImportError:
|
344 |
+
print("PyTorch not found.")
|
345 |
+
except Exception as e:
|
346 |
+
print(f"Error during PyTorch check: {e}")
|
347 |
+
|
348 |
+
try:
|
349 |
+
print(f"ONNX Runtime build info: {ort.get_buildinfo()}")
|
350 |
+
except Exception as e:
|
351 |
+
print(f"Error getting ONNX Runtime build info: {e}")
|
352 |
+
print("-------------------------")
|
353 |
+
# --- End Added Logging ---
|
354 |
+
|
355 |
# ONNXセッションの初期化 (GPU優先)
|
356 |
available_providers = ort.get_available_providers()
|
357 |
print(f"Available ONNX Runtime providers: {available_providers}")
|