cella110n commited on
Commit
ce77a3a
·
verified ·
1 Parent(s): 970178a

Upload 3 files

Browse files
Files changed (3) hide show
  1. README.md +31 -35
  2. app.py +5 -2
  3. requirements.txt +1 -1
README.md CHANGED
@@ -1,35 +1,31 @@
1
- ---
2
- title: WD EVA02 LoRA ONNX Tagger
3
- emoji: 🖼️
4
- colorFrom: blue
5
- colorTo: green
6
- sdk: gradio
7
- sdk_version: 4.43.0 # Updated Gradio SDK version
8
- app_file: app.py
9
- license: apache-2.0 # Or your preferred license
10
- # Hardware Selection:
11
- # For CPU execution (recommended if GPU isn't strictly needed):
12
- # hardware: cpu-upgrade
13
- # For GPU execution (requires compatible CUDA setup):
14
- # hardware: cuda-t4-small
15
- pinned: false # Set to true if you want to pin the hardware
16
- # hf_token: YOUR_HF_TOKEN # Use secrets instead!
17
- ---
18
-
19
- # WD EVA02 LoRA ONNX Tagger
20
-
21
- This Space demonstrates image tagging using a fine-tuned WD EVA02 model (converted to ONNX format).
22
-
23
- Model Repository: [celstk/wd-eva02-lora-onnx](https://huggingface.co/celstk/wd-eva02-lora-onnx)
24
-
25
- **How to Use:**
26
- 1. Upload an image using the upload button.
27
- 2. Alternatively, paste an image URL into the browser (experimental paste handling).
28
- 3. Adjust the tag thresholds if needed.
29
- 4. Choose the output mode (Tags only or include visualization).
30
- 5. Click the "Predict" button.
31
-
32
- **Note:**
33
- - This Space uses a model from a **private** repository (`celstk/wd-eva02-lora-onnx`). You might need to duplicate this space and add your Hugging Face token (`HF_TOKEN`) to the Space secrets to allow downloading the model files.
34
- - Image pasting behavior might vary across browsers.
35
- - If you require GPU acceleration, uncomment the `hardware: cuda-t4-small` line above and ensure the environment has the necessary CUDA libraries compatible with `onnxruntime-gpu`. The current setup defaults to CPU due to potential CUDA library mismatches in the standard Spaces environment.
 
1
+ ---
2
+ title: WD EVA02 LoRA ONNX Tagger
3
+ emoji: 🖼️
4
+ colorFrom: blue
5
+ colorTo: green
6
+ sdk: gradio
7
+ sdk_version: 4.43.0 # requirements.txt と合わせるか確認
8
+ app_file: app.py
9
+ license: apache-2.0 # または適切なライセンス
10
+ # Pinned Hardware: T4 small (GPU) or CPU upgrade (CPU)
11
+ # pinned: false # 必要に応じてTrueに
12
+ # hardware: cpu-upgrade # or cuda-t4-small
13
+ # hf_token: YOUR_HF_TOKEN # Use secrets instead!
14
+ ---
15
+
16
+ # WD EVA02 LoRA ONNX Tagger
17
+
18
+ This Space demonstrates image tagging using a fine-tuned WD EVA02 model (converted to ONNX format).
19
+
20
+ Model Repository: [celstk/wd-eva02-lora-onnx](https://huggingface.co/celstk/wd-eva02-lora-onnx)
21
+
22
+ **How to Use:**
23
+ 1. Upload an image using the upload button.
24
+ 2. Alternatively, paste an image URL into the browser (experimental paste handling).
25
+ 3. Adjust the tag thresholds if needed.
26
+ 4. Choose the output mode (Tags only or include visualization).
27
+ 5. Click the "Predict" button.
28
+
29
+ **Note:**
30
+ - This Space uses a model from a **private** repository (`celstk/wd-eva02-lora-onnx`). You might need to duplicate this space and add your Hugging Face token (`HF_TOKEN`) to the Space secrets to allow downloading the model files.
31
+ - Image pasting behavior might vary across browsers.
 
 
 
 
app.py CHANGED
@@ -1,5 +1,5 @@
1
  import gradio as gr
2
- import spaces
3
  import numpy as np
4
  from PIL import Image, ImageDraw, ImageFont
5
  import json
@@ -12,6 +12,7 @@ from huggingface_hub import hf_hub_download
12
  from dataclasses import dataclass
13
  from typing import List, Dict, Optional, Tuple
14
  import time
 
15
 
16
  import torch
17
  import timm
@@ -347,9 +348,11 @@ def initialize_labels_and_paths():
347
  print(f"Tag mapping file not found after download attempt: {tag_mapping_path_global}")
348
  raise gr.Error("Tag mapping file could not be downloaded or found.")
349
 
350
- @spaces.GPU()
 
351
  def predict(image_input, gen_threshold, char_threshold, output_mode):
352
  print("--- predict function started (GPU worker) ---")
 
353
  initialize_labels_and_paths()
354
  print("Loading PyTorch model...")
355
  global safetensors_path_global, labels_data
 
1
  import gradio as gr
2
+ # import onnxruntime as ort # Removed
3
  import numpy as np
4
  from PIL import Image, ImageDraw, ImageFont
5
  import json
 
12
  from dataclasses import dataclass
13
  from typing import List, Dict, Optional, Tuple
14
  import time
15
+ # import spaces # Keep for @spaces.GPU
16
 
17
  import torch
18
  import timm
 
348
  print(f"Tag mapping file not found after download attempt: {tag_mapping_path_global}")
349
  raise gr.Error("Tag mapping file could not be downloaded or found.")
350
 
351
+ # --- Prediction Function (PyTorch based) ---
352
+ # @spaces.GPU() # Removed decorator
353
  def predict(image_input, gen_threshold, char_threshold, output_mode):
354
  print("--- predict function started (GPU worker) ---")
355
+ """Gradioインターフェース用の予測関数 (PyTorch GPUワーカー内)"""
356
  initialize_labels_and_paths()
357
  print("Loading PyTorch model...")
358
  global safetensors_path_global, labels_data
requirements.txt CHANGED
@@ -6,7 +6,7 @@ torchaudio
6
  safetensors
7
  transformers
8
  timm # Needed for EVA02 base model
9
- numpy # Keep numpy, let pip resolve version
10
  Pillow
11
  matplotlib
12
  requests
 
6
  safetensors
7
  transformers
8
  timm # Needed for EVA02 base model
9
+ numpy # Let pip resolve NumPy version
10
  Pillow
11
  matplotlib
12
  requests