Spaces:
Running
on
Zero
Running
on
Zero
Upload app.py
Browse files
app.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import spaces
|
| 3 |
import onnxruntime as ort
|
| 4 |
import numpy as np
|
| 5 |
from PIL import Image, ImageDraw, ImageFont
|
|
@@ -12,6 +12,8 @@ import matplotlib
|
|
| 12 |
from huggingface_hub import hf_hub_download
|
| 13 |
from dataclasses import dataclass
|
| 14 |
from typing import List, Dict, Optional, Tuple
|
|
|
|
|
|
|
| 15 |
|
| 16 |
# MatplotlibのバックエンドをAggに設定 (GUIなし環境用)
|
| 17 |
matplotlib.use('Agg')
|
|
@@ -293,7 +295,8 @@ TAG_MAPPING_FILENAME = "cl_eva02_tagger_v1_250426/tag_mapping.json"
|
|
| 293 |
CACHE_DIR = "./model_cache"
|
| 294 |
|
| 295 |
# グローバル変数(モデルとラベルをキャッシュ)
|
| 296 |
-
onnx_session = None
|
|
|
|
| 297 |
labels_data = None
|
| 298 |
tag_to_category_map = None
|
| 299 |
|
|
@@ -319,111 +322,98 @@ def download_model_files():
|
|
| 319 |
|
| 320 |
|
| 321 |
def initialize_model():
|
| 322 |
-
"""
|
| 323 |
-
global
|
| 324 |
-
|
|
|
|
|
|
|
| 325 |
model_path, tag_mapping_path = download_model_files()
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
# --- Added Logging ---
|
| 329 |
-
print("--- Environment Check ---")
|
| 330 |
-
try:
|
| 331 |
-
import torch
|
| 332 |
-
print(f"PyTorch version: {torch.__version__}")
|
| 333 |
-
if torch.cuda.is_available():
|
| 334 |
-
print(f"PyTorch CUDA available: True")
|
| 335 |
-
print(f"PyTorch CUDA version: {torch.version.cuda}")
|
| 336 |
-
print(f"Detected GPU: {torch.cuda.get_device_name(0)}")
|
| 337 |
-
if torch.backends.cudnn.is_available():
|
| 338 |
-
print(f"PyTorch cuDNN available: True")
|
| 339 |
-
print(f"PyTorch cuDNN version: {torch.backends.cudnn.version()}")
|
| 340 |
-
else:
|
| 341 |
-
print("PyTorch cuDNN available: False")
|
| 342 |
-
else:
|
| 343 |
-
print("PyTorch CUDA available: False")
|
| 344 |
-
except ImportError:
|
| 345 |
-
print("PyTorch not found.")
|
| 346 |
-
except Exception as e:
|
| 347 |
-
print(f"Error during PyTorch check: {e}")
|
| 348 |
-
|
| 349 |
-
try:
|
| 350 |
-
print(f"ONNX Runtime build info: {ort.get_buildinfo()}")
|
| 351 |
-
except Exception as e:
|
| 352 |
-
print(f"Error getting ONNX Runtime build info: {e}")
|
| 353 |
-
print("-------------------------")
|
| 354 |
-
# --- End Added Logging ---
|
| 355 |
-
|
| 356 |
-
# ONNXセッションの初期化 (GPU優先)
|
| 357 |
-
available_providers = ort.get_available_providers()
|
| 358 |
-
print(f"Available ONNX Runtime providers: {available_providers}")
|
| 359 |
-
providers = []
|
| 360 |
-
if 'CUDAExecutionProvider' in available_providers:
|
| 361 |
-
providers.append('CUDAExecutionProvider')
|
| 362 |
-
# elif 'DmlExecutionProvider' in available_providers: # DirectML (Windows)
|
| 363 |
-
# providers.append('DmlExecutionProvider')
|
| 364 |
-
providers.append('CPUExecutionProvider') # Always include CPU as fallback
|
| 365 |
-
|
| 366 |
-
try:
|
| 367 |
-
onnx_session = ort.InferenceSession(model_path, providers=providers)
|
| 368 |
-
print(f"Using ONNX Runtime provider: {onnx_session.get_providers()[0]}")
|
| 369 |
-
except Exception as e:
|
| 370 |
-
print(f"Error initializing ONNX session with providers {providers}: {e}")
|
| 371 |
-
print("Falling back to CPUExecutionProvider only.")
|
| 372 |
-
onnx_session = ort.InferenceSession(model_path, providers=['CPUExecutionProvider'])
|
| 373 |
-
|
| 374 |
labels_data, _, tag_to_category_map = load_tag_mapping(tag_mapping_path)
|
| 375 |
-
print("
|
|
|
|
| 376 |
|
| 377 |
@spaces.GPU()
|
| 378 |
def predict(image_input, gen_threshold, char_threshold, output_mode):
|
| 379 |
-
print("--- predict function started ---")
|
| 380 |
-
"""Gradioインターフェース用の予測関数"""
|
| 381 |
-
initialize_model() #
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 382 |
|
| 383 |
if image_input is None:
|
| 384 |
return "Please upload an image.", None
|
| 385 |
|
| 386 |
-
print(f"Processing image with thresholds: gen={gen_threshold}, char={char_threshold}")
|
| 387 |
|
| 388 |
# PIL Imageオブジェクトであることを確認
|
| 389 |
if not isinstance(image_input, Image.Image):
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
else:
|
| 408 |
image = image_input
|
| 409 |
|
| 410 |
-
|
| 411 |
# 前処理
|
| 412 |
original_pil_image, input_data = preprocess_image(image)
|
| 413 |
|
| 414 |
# データ型をモデルの期待に合わせる (通常はfloat32)
|
| 415 |
-
input_name =
|
| 416 |
-
expected_type =
|
| 417 |
if expected_type == 'tensor(float16)':
|
| 418 |
input_data = input_data.astype(np.float16)
|
| 419 |
else:
|
| 420 |
input_data = input_data.astype(np.float32) # Default to float32
|
| 421 |
|
| 422 |
-
# 推論
|
| 423 |
start_time = time.time()
|
| 424 |
-
outputs =
|
| 425 |
inference_time = time.time() - start_time
|
| 426 |
-
print(f"Inference completed in {inference_time:.3f} seconds")
|
| 427 |
|
| 428 |
# シグモイド関数で確率に変換
|
| 429 |
probs = 1 / (1 + np.exp(-outputs[0])) # Apply sigmoid to the first batch item
|
|
@@ -437,12 +427,12 @@ def predict(image_input, gen_threshold, char_threshold, output_mode):
|
|
| 437 |
if predictions["rating"]:
|
| 438 |
output_tags.append(predictions["rating"][0][0].replace("_", " "))
|
| 439 |
if predictions["quality"]:
|
| 440 |
-
|
| 441 |
|
| 442 |
# 残りのカテゴリをアルファベット順に追加(オプション)
|
| 443 |
for category in ["artist", "character", "copyright", "general", "meta"]:
|
| 444 |
tags = [tag.replace("_", " ") for tag, prob in predictions[category]
|
| 445 |
-
|
| 446 |
output_tags.extend(tags)
|
| 447 |
|
| 448 |
output_text = ", ".join(output_tags)
|
|
@@ -454,7 +444,6 @@ def predict(image_input, gen_threshold, char_threshold, output_mode):
|
|
| 454 |
return output_text, viz_image
|
| 455 |
|
| 456 |
# --- Gradio Interface Definition ---
|
| 457 |
-
import time
|
| 458 |
|
| 459 |
# CSS for styling
|
| 460 |
css = """
|
|
@@ -594,6 +583,5 @@ if __name__ == "__main__":
|
|
| 594 |
# 環境変数HF_TOKENがない場合に警告(プライベートリポジトリ用)
|
| 595 |
if not os.environ.get("HF_TOKEN"):
|
| 596 |
print("Warning: HF_TOKEN environment variable not set. Downloads from private repositories may fail.")
|
| 597 |
-
#
|
| 598 |
-
initialize_model() # Removed startup initialization
|
| 599 |
demo.launch(share=True)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
# import spaces # Removed
|
| 3 |
import onnxruntime as ort
|
| 4 |
import numpy as np
|
| 5 |
from PIL import Image, ImageDraw, ImageFont
|
|
|
|
| 12 |
from huggingface_hub import hf_hub_download
|
| 13 |
from dataclasses import dataclass
|
| 14 |
from typing import List, Dict, Optional, Tuple
|
| 15 |
+
import time
|
| 16 |
+
import spaces
|
| 17 |
|
| 18 |
# MatplotlibのバックエンドをAggに設定 (GUIなし環境用)
|
| 19 |
matplotlib.use('Agg')
|
|
|
|
| 295 |
CACHE_DIR = "./model_cache"
|
| 296 |
|
| 297 |
# グローバル変数(モデルとラベルをキャッシュ)
|
| 298 |
+
# onnx_session = None # Removed global session
|
| 299 |
+
model_path_global = None # Store model path globally
|
| 300 |
labels_data = None
|
| 301 |
tag_to_category_map = None
|
| 302 |
|
|
|
|
| 322 |
|
| 323 |
|
| 324 |
def initialize_model():
|
| 325 |
+
"""モデルファイルとラベルデータを準備(キャッシュ)"""
|
| 326 |
+
global model_path_global, labels_data, tag_to_category_map
|
| 327 |
+
# Only initialize once
|
| 328 |
+
if labels_data is None:
|
| 329 |
+
print("Downloading model files...") # Moved print here
|
| 330 |
model_path, tag_mapping_path = download_model_files()
|
| 331 |
+
model_path_global = model_path # Store the path
|
| 332 |
+
print("Loading labels...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 333 |
labels_data, _, tag_to_category_map = load_tag_mapping(tag_mapping_path)
|
| 334 |
+
print("Labels loaded.")
|
| 335 |
+
# --- Removed ONNX Session Initialization ---
|
| 336 |
|
| 337 |
@spaces.GPU()
|
| 338 |
def predict(image_input, gen_threshold, char_threshold, output_mode):
|
| 339 |
+
print("--- predict function started (GPU worker) ---")
|
| 340 |
+
"""Gradioインターフェース用の予測関数 (GPUワーカー内)"""
|
| 341 |
+
initialize_model() # Ensure files/labels are ready
|
| 342 |
+
|
| 343 |
+
# --- Create ONNX session inside the GPU function ---
|
| 344 |
+
print("Creating ONNX session for prediction...")
|
| 345 |
+
global model_path_global # Access the global model path
|
| 346 |
+
if model_path_global is None:
|
| 347 |
+
# Attempt initialization again if model path is missing (e.g., after restart)
|
| 348 |
+
initialize_model()
|
| 349 |
+
if model_path_global is None:
|
| 350 |
+
return "Error: Model path could not be initialized.", None
|
| 351 |
+
|
| 352 |
+
available_providers = ort.get_available_providers()
|
| 353 |
+
print(f"(Worker) Available ONNX Runtime providers: {available_providers}")
|
| 354 |
+
providers = []
|
| 355 |
+
if 'CUDAExecutionProvider' in available_providers:
|
| 356 |
+
providers.append('CUDAExecutionProvider')
|
| 357 |
+
providers.append('CPUExecutionProvider') # Always include CPU as fallback
|
| 358 |
+
|
| 359 |
+
try:
|
| 360 |
+
# Create session with GPU preference inside the worker
|
| 361 |
+
session = ort.InferenceSession(model_path_global, providers=providers)
|
| 362 |
+
print(f"(Worker) Using ONNX Runtime provider: {session.get_providers()[0]}")
|
| 363 |
+
except Exception as e:
|
| 364 |
+
print(f"(Worker) Error initializing ONNX session with providers {providers}: {e}")
|
| 365 |
+
# Fallback explicitly to CPU if GPU fails inside worker
|
| 366 |
+
try:
|
| 367 |
+
print("(Worker) Falling back to CPUExecutionProvider only.")
|
| 368 |
+
session = ort.InferenceSession(model_path_global, providers=['CPUExecutionProvider'])
|
| 369 |
+
except Exception as e_cpu:
|
| 370 |
+
print(f"(Worker) Error initializing ONNX session even with CPU: {e_cpu}")
|
| 371 |
+
return f"Error initializing ONNX session: {e_cpu}", None
|
| 372 |
+
# --- Session created ---
|
| 373 |
|
| 374 |
if image_input is None:
|
| 375 |
return "Please upload an image.", None
|
| 376 |
|
| 377 |
+
print(f"(Worker) Processing image with thresholds: gen={gen_threshold}, char={char_threshold}")
|
| 378 |
|
| 379 |
# PIL Imageオブジェクトであることを確認
|
| 380 |
if not isinstance(image_input, Image.Image):
|
| 381 |
+
try:
|
| 382 |
+
# URLの場合
|
| 383 |
+
if isinstance(image_input, str) and image_input.startswith("http"):
|
| 384 |
+
response = requests.get(image_input)
|
| 385 |
+
response.raise_for_status()
|
| 386 |
+
image = Image.open(io.BytesIO(response.content))
|
| 387 |
+
# ファイルパスの場合 (Gradioでは通常発生しないが念のため)
|
| 388 |
+
elif isinstance(image_input, str) and os.path.exists(image_input):
|
| 389 |
+
image = Image.open(image_input)
|
| 390 |
+
# Numpy配列の場合 (Gradio Imageコンポーネントからの入力)
|
| 391 |
+
elif isinstance(image_input, np.ndarray):
|
| 392 |
+
image = Image.fromarray(image_input)
|
| 393 |
+
else:
|
| 394 |
+
raise ValueError("Unsupported image input type")
|
| 395 |
+
except Exception as e:
|
| 396 |
+
print(f"(Worker) Error loading image: {e}")
|
| 397 |
+
return f"Error loading image: {e}", None
|
| 398 |
else:
|
| 399 |
image = image_input
|
| 400 |
|
|
|
|
| 401 |
# 前処理
|
| 402 |
original_pil_image, input_data = preprocess_image(image)
|
| 403 |
|
| 404 |
# データ型をモデルの期待に合わせる (通常はfloat32)
|
| 405 |
+
input_name = session.get_inputs()[0].name
|
| 406 |
+
expected_type = session.get_inputs()[0].type
|
| 407 |
if expected_type == 'tensor(float16)':
|
| 408 |
input_data = input_data.astype(np.float16)
|
| 409 |
else:
|
| 410 |
input_data = input_data.astype(np.float32) # Default to float32
|
| 411 |
|
| 412 |
+
# 推論 (作成したセッションを使用)
|
| 413 |
start_time = time.time()
|
| 414 |
+
outputs = session.run(None, {input_name: input_data})[0]
|
| 415 |
inference_time = time.time() - start_time
|
| 416 |
+
print(f"(Worker) Inference completed in {inference_time:.3f} seconds")
|
| 417 |
|
| 418 |
# シグモイド関数で確率に変換
|
| 419 |
probs = 1 / (1 + np.exp(-outputs[0])) # Apply sigmoid to the first batch item
|
|
|
|
| 427 |
if predictions["rating"]:
|
| 428 |
output_tags.append(predictions["rating"][0][0].replace("_", " "))
|
| 429 |
if predictions["quality"]:
|
| 430 |
+
output_tags.append(predictions["quality"][0][0].replace("_", " "))
|
| 431 |
|
| 432 |
# 残りのカテゴリをアルファベット順に追加(オプション)
|
| 433 |
for category in ["artist", "character", "copyright", "general", "meta"]:
|
| 434 |
tags = [tag.replace("_", " ") for tag, prob in predictions[category]
|
| 435 |
+
if not (category == "meta" and any(p in tag.lower() for p in ['id', 'commentary','mismatch']))] # メタタグフィルタリング
|
| 436 |
output_tags.extend(tags)
|
| 437 |
|
| 438 |
output_text = ", ".join(output_tags)
|
|
|
|
| 444 |
return output_text, viz_image
|
| 445 |
|
| 446 |
# --- Gradio Interface Definition ---
|
|
|
|
| 447 |
|
| 448 |
# CSS for styling
|
| 449 |
css = """
|
|
|
|
| 583 |
# 環境変数HF_TOKENがない場合に警告(プライベートリポジトリ用)
|
| 584 |
if not os.environ.get("HF_TOKEN"):
|
| 585 |
print("Warning: HF_TOKEN environment variable not set. Downloads from private repositories may fail.")
|
| 586 |
+
# initialize_model() # Removed startup initialization (model loaded in predict)
|
|
|
|
| 587 |
demo.launch(share=True)
|