import gradio as gr import onnxruntime as ort import numpy as np from PIL import Image, ImageDraw, ImageFont import json import os import io import requests import matplotlib.pyplot as plt import matplotlib from huggingface_hub import hf_hub_download from dataclasses import dataclass from typing import List, Dict, Optional, Tuple # MatplotlibのバックエンドをAggに設定 (GUIなし環境用) matplotlib.use('Agg') # --- onnx_predict.pyからの移植 --- @dataclass class LabelData: names: list[str] rating: list[np.int64] general: list[np.int64] artist: list[np.int64] character: list[np.int64] copyright: list[np.int64] meta: list[np.int64] quality: list[np.int64] def pil_ensure_rgb(image: Image.Image) -> Image.Image: if image.mode not in ["RGB", "RGBA"]: image = image.convert("RGBA") if "transparency" in image.info else image.convert("RGB") if image.mode == "RGBA": background = Image.new("RGB", image.size, (255, 255, 255)) background.paste(image, mask=image.split()[3]) image = background return image def pil_pad_square(image: Image.Image) -> Image.Image: width, height = image.size if width == height: return image new_size = max(width, height) new_image = Image.new("RGB", (new_size, new_size), (255, 255, 255)) paste_position = ((new_size - width) // 2, (new_size - height) // 2) new_image.paste(image, paste_position) return new_image def load_tag_mapping(mapping_path): with open(mapping_path, 'r', encoding='utf-8') as f: tag_mapping_data = json.load(f) # 新旧フォーマット対応 if isinstance(tag_mapping_data, dict) and "idx_to_tag" in tag_mapping_data: # 旧フォーマット (辞書の中にidx_to_tagとtag_to_categoryがある) idx_to_tag_dict = tag_mapping_data["idx_to_tag"] tag_to_category_dict = tag_mapping_data["tag_to_category"] # tag_mapping_dataが文字列キーになっている可能性があるのでintに変換 idx_to_tag = {int(k): v for k, v in idx_to_tag_dict.items()} tag_to_category = tag_to_category_dict elif isinstance(tag_mapping_data, dict): # 新フォーマット (キーがインデックスの辞書) tag_mapping_data = {int(k): v for k, v in tag_mapping_data.items()} idx_to_tag = {} tag_to_category = {} for idx, data in tag_mapping_data.items(): tag = data['tag'] category = data['category'] idx_to_tag[idx] = tag tag_to_category[tag] = category else: raise ValueError("Unsupported tag mapping format") names = [None] * (max(idx_to_tag.keys()) + 1) rating = [] general = [] artist = [] character = [] copyright = [] meta = [] quality = [] for idx, tag in idx_to_tag.items(): if idx >= len(names): # namesリストのサイズが足りない場合拡張 names.extend([None] * (idx - len(names) + 1)) names[idx] = tag category = tag_to_category.get(tag, 'Unknown') # カテゴリが見つからない場合 if category == 'Rating': rating.append(idx) elif category == 'General': general.append(idx) elif category == 'Artist': artist.append(idx) elif category == 'Character': character.append(idx) elif category == 'Copyright': copyright.append(idx) elif category == 'Meta': meta.append(idx) elif category == 'Quality': quality.append(idx) # Unknownカテゴリは無視 label_data = LabelData( names=names, rating=np.array(rating, dtype=np.int64), general=np.array(general, dtype=np.int64), artist=np.array(artist, dtype=np.int64), character=np.array(character, dtype=np.int64), copyright=np.array(copyright, dtype=np.int64), meta=np.array(meta, dtype=np.int64), quality=np.array(quality, dtype=np.int64) ) return label_data, idx_to_tag, tag_to_category def preprocess_image(image: Image.Image, target_size=(448, 448)): image = pil_ensure_rgb(image) image = pil_pad_square(image) image_resized = image.resize(target_size, Image.BICUBIC) img_array = np.array(image_resized, dtype=np.float32) / 255.0 img_array = img_array.transpose(2, 0, 1) # HWC -> CHW # RGB -> BGR (モデルがBGRを期待する場合 - WD Tagger v3はBGR) # WD Tagger V2/V1はRGBなので注意 img_array = img_array[::-1, :, :] mean = np.array([0.5, 0.5, 0.5], dtype=np.float32).reshape(3, 1, 1) std = np.array([0.5, 0.5, 0.5], dtype=np.float32).reshape(3, 1, 1) img_array = (img_array - mean) / std img_array = np.expand_dims(img_array, axis=0) # Add batch dimension return image, img_array # Return original PIL image and processed numpy array def get_tags(probs, labels: LabelData, gen_threshold, char_threshold): result = { "rating": [], "general": [], "character": [], "copyright": [], "artist": [], "meta": [], "quality": [] } # Rating (select the max) if labels.rating.size > 0: rating_probs = probs[labels.rating] if rating_probs.size > 0: rating_idx = np.argmax(rating_probs) # Check if the index is valid for names list if labels.rating[rating_idx] < len(labels.names): rating_name = labels.names[labels.rating[rating_idx]] rating_conf = float(rating_probs[rating_idx]) result["rating"].append((rating_name, rating_conf)) else: print(f"Warning: Rating index {labels.rating[rating_idx]} out of bounds for names list (size {len(labels.names)}).") # Quality (select the max) if labels.quality.size > 0: quality_probs = probs[labels.quality] if quality_probs.size > 0: quality_idx = np.argmax(quality_probs) if labels.quality[quality_idx] < len(labels.names): quality_name = labels.names[labels.quality[quality_idx]] quality_conf = float(quality_probs[quality_idx]) result["quality"].append((quality_name, quality_conf)) else: print(f"Warning: Quality index {labels.quality[quality_idx]} out of bounds for names list (size {len(labels.names)}).") category_map = { "general": (labels.general, gen_threshold), "character": (labels.character, char_threshold), "copyright": (labels.copyright, char_threshold), "artist": (labels.artist, char_threshold), "meta": (labels.meta, gen_threshold) } for category, (indices, threshold) in category_map.items(): if indices.size > 0: # Filter indices to be within the bounds of probs and labels.names valid_indices = indices[(indices < len(probs)) & (indices < len(labels.names))] if valid_indices.size > 0: category_probs = probs[valid_indices] mask = category_probs >= threshold selected_indices = valid_indices[mask] selected_probs = category_probs[mask] for idx, prob in zip(selected_indices, selected_probs): result[category].append((labels.names[idx], float(prob))) # Sort by probability for k in result: result[k] = sorted(result[k], key=lambda x: x[1], reverse=True) return result def visualize_predictions(image: Image.Image, predictions, threshold=0.45): # Filter out unwanted meta tags filtered_meta = [] excluded_meta_patterns = ['id', 'commentary', 'request', 'mismatch'] for tag, prob in predictions["meta"]: if not any(pattern in tag.lower() for pattern in excluded_meta_patterns): filtered_meta.append((tag, prob)) predictions["meta"] = filtered_meta # Replace with filtered # Create plot fig = plt.figure(figsize=(20, 12), dpi=100) gs = fig.add_gridspec(1, 2, width_ratios=[1.2, 1]) ax_img = fig.add_subplot(gs[0, 0]) ax_img.imshow(image) ax_img.set_title("Original Image") ax_img.axis('off') ax_tags = fig.add_subplot(gs[0, 1]) all_tags = [] all_probs = [] all_colors = [] color_map = {'rating': 'red', 'character': 'blue', 'copyright': 'purple', 'artist': 'orange', 'general': 'green', 'meta': 'gray', 'quality': 'yellow'} for cat, prefix, color in [('rating', 'R', 'red'), ('character', 'C', 'blue'), ('copyright', '©', 'purple'), ('artist', 'A', 'orange'), ('general', 'G', 'green'), ('meta', 'M', 'gray'), ('quality', 'Q', 'yellow')]: for tag, prob in predictions[cat]: all_tags.append(f"[{prefix}] {tag}") all_probs.append(prob) all_colors.append(color) if not all_tags: ax_tags.text(0.5, 0.5, "No tags found above threshold", ha='center', va='center') ax_tags.set_title(f"Tags (threshold={threshold})") ax_tags.axis('off') plt.tight_layout() # Save figure to a BytesIO object buf = io.BytesIO() plt.savefig(buf, format='png', dpi=100) plt.close(fig) buf.seek(0) return Image.open(buf) sorted_indices = sorted(range(len(all_probs)), key=lambda i: all_probs[i], reverse=True) all_tags = [all_tags[i] for i in sorted_indices] all_probs = [all_probs[i] for i in sorted_indices] all_colors = [all_colors[i] for i in sorted_indices] all_tags.reverse() all_probs.reverse() all_colors.reverse() num_tags = len(all_tags) bar_height = 0.8 if num_tags > 30: bar_height = 0.8 * (30 / num_tags) y_positions = np.arange(num_tags) bars = ax_tags.barh(y_positions, all_probs, height=bar_height, color=all_colors) ax_tags.set_yticks(y_positions) ax_tags.set_yticklabels(all_tags) fontsize = 10 if num_tags > 40: fontsize = 8 elif num_tags > 60: fontsize = 6 for label in ax_tags.get_yticklabels(): label.set_fontsize(fontsize) for i, (bar, prob) in enumerate(zip(bars, all_probs)): ax_tags.text(min(prob + 0.02, 0.98), y_positions[i], f"{prob:.3f}", va='center', fontsize=fontsize) ax_tags.set_xlim(0, 1) ax_tags.set_title(f"Tags (threshold={threshold})") from matplotlib.patches import Patch legend_elements = [Patch(facecolor=color, label=cat.capitalize()) for cat, color in color_map.items()] ax_tags.legend(handles=legend_elements, loc='lower right', fontsize=8) plt.tight_layout() plt.subplots_adjust(bottom=0.05) # Save figure to a BytesIO object buf = io.BytesIO() plt.savefig(buf, format='png', dpi=100) plt.close(fig) buf.seek(0) return Image.open(buf) # --- Gradio App Logic --- # 定数 REPO_ID = "cella110n/cl_tagger" MODEL_FILENAME = "cl_eva02_tagger_v1_250426/model_optimized.onnx" # MODEL_FILENAME = "cl_eva02_tagger_v1_250426/model.onnx" # Use non-optimized if needed TAG_MAPPING_FILENAME = "cl_eva02_tagger_v1_250426/tag_mapping.json" CACHE_DIR = "./model_cache" # グローバル変数(モデルとラベルをキャッシュ) onnx_session = None labels_data = None tag_to_category_map = None def download_model_files(): """Hugging Face Hubからモデルとタグマッピングをダウンロード""" print("Downloading model files...") # 環境変数からHFトークンを取得 (プライベートリポジトリ用) hf_token = os.environ.get("HF_TOKEN") try: model_path = hf_hub_download(repo_id=REPO_ID, filename=MODEL_FILENAME, cache_dir=CACHE_DIR, token=hf_token) tag_mapping_path = hf_hub_download(repo_id=REPO_ID, filename=TAG_MAPPING_FILENAME, cache_dir=CACHE_DIR, token=hf_token) print(f"Model downloaded to: {model_path}") print(f"Tag mapping downloaded to: {tag_mapping_path}") return model_path, tag_mapping_path except Exception as e: print(f"Error downloading files: {e}") # トークンがない場合のエラーメッセージを改善 if "401 Client Error" in str(e) or "Repository not found" in str(e): raise gr.Error(f"Could not download files from {REPO_ID}. " f"If this is a private repository, make sure to set the HF_TOKEN secret in your Space settings.") else: raise gr.Error(f"Error downloading files: {e}") def initialize_model(): """モデルとラベルデータを初期化(キャッシュ)""" global onnx_session, labels_data, tag_to_category_map if onnx_session is None: model_path, tag_mapping_path = download_model_files() print("Loading model and labels...") # ONNXセッションの初期化 (GPU優先) available_providers = ort.get_available_providers() print(f"Available ONNX Runtime providers: {available_providers}") providers = [] if 'CUDAExecutionProvider' in available_providers: providers.append('CUDAExecutionProvider') # elif 'DmlExecutionProvider' in available_providers: # DirectML (Windows) # providers.append('DmlExecutionProvider') providers.append('CPUExecutionProvider') # Always include CPU as fallback try: onnx_session = ort.InferenceSession(model_path, providers=providers) print(f"Using ONNX Runtime provider: {onnx_session.get_providers()[0]}") except Exception as e: print(f"Error initializing ONNX session with providers {providers}: {e}") print("Falling back to CPUExecutionProvider only.") onnx_session = ort.InferenceSession(model_path, providers=['CPUExecutionProvider']) labels_data, _, tag_to_category_map = load_tag_mapping(tag_mapping_path) print("Model and labels loaded.") def predict(image_input, gen_threshold, char_threshold, output_mode): """Gradioインターフェース用の予測関数""" initialize_model() # モデルがロードされていなければロード if image_input is None: return "Please upload an image.", None print(f"Processing image with thresholds: gen={gen_threshold}, char={char_threshold}") # PIL Imageオブジェクトであることを確認 if not isinstance(image_input, Image.Image): try: # URLの場合 if isinstance(image_input, str) and image_input.startswith("http"): response = requests.get(image_input) response.raise_for_status() image = Image.open(io.BytesIO(response.content)) # ファイルパスの場合 (Gradioでは通常発生しないが念のため) elif isinstance(image_input, str) and os.path.exists(image_input): image = Image.open(image_input) # Numpy配列の場合 (Gradio Imageコンポーネントからの入力) elif isinstance(image_input, np.ndarray): image = Image.fromarray(image_input) else: raise ValueError("Unsupported image input type") except Exception as e: print(f"Error loading image: {e}") return f"Error loading image: {e}", None else: image = image_input # 前処理 original_pil_image, input_data = preprocess_image(image) # データ型をモデルの期待に合わせる (通常はfloat32) input_name = onnx_session.get_inputs()[0].name expected_type = onnx_session.get_inputs()[0].type if expected_type == 'tensor(float16)': input_data = input_data.astype(np.float16) else: input_data = input_data.astype(np.float32) # Default to float32 # 推論 start_time = time.time() outputs = onnx_session.run(None, {input_name: input_data})[0] inference_time = time.time() - start_time print(f"Inference completed in {inference_time:.3f} seconds") # シグモイド関数で確率に変換 probs = 1 / (1 + np.exp(-outputs[0])) # Apply sigmoid to the first batch item # タグ取得 predictions = get_tags(probs, labels_data, gen_threshold, char_threshold) # タグを整形 output_tags = [] # RatingとQualityを最初に追加 if predictions["rating"]: output_tags.append(predictions["rating"][0][0].replace("_", " ")) if predictions["quality"]: output_tags.append(predictions["quality"][0][0].replace("_", " ")) # 残りのカテゴリをアルファベット順に追加(オプション) for category in ["artist", "character", "copyright", "general", "meta"]: tags = [tag.replace("_", " ") for tag, prob in predictions[category] if not (category == "meta" and any(p in tag.lower() for p in ['id', 'commentary','mismatch']))] # メタタグフィルタリング output_tags.extend(tags) output_text = ", ".join(output_tags) if output_mode == "Tags Only": return output_text, None else: # Visualization viz_image = visualize_predictions(original_pil_image, predictions, gen_threshold) return output_text, viz_image # --- Gradio Interface Definition --- import time # CSS for styling css = """ .gradio-container { font-family: 'IBM Plex Sans', sans-serif; } footer { display: none !important; } .gr-prose { max-width: 100% !important; } """ # Custom JS for image pasting and URL handling js = """ async function paste_image(blob, gen_thresh, char_thresh, out_mode) { const data = await fetch(blob) const image_data = await data.blob() const file = new File([image_data], "pasted_image.png",{ type: image_data.type }) const dt = new DataTransfer() dt.items.add(file) const element = document.querySelector('#input-image input[type="file"]') element.files = dt.files // Trigger the change event manually const event = new Event('change', { bubbles: true }) element.dispatchEvent(event) // Wait a bit for Gradio to process the change, then trigger predict if needed // await new Promise(resolve => setTimeout(resolve, 100)); // Optional delay // You might need to manually trigger the prediction or rely on Gradio's auto-triggering return [file, gen_thresh, char_thresh, out_mode]; // Return input for Gradio function } async function paste_update(evt){ if (!evt.clipboardData || !evt.clipboardData.items) return; var url = evt.clipboardData.getData('text'); if (url) { // Basic check for image URL (you might want a more robust check) if (/\.(jpg|jpeg|png|webp|bmp)$/i.test(url)) { // Create a button or link to load the URL const url_container = document.getElementById('url-input-container'); url_container.innerHTML = `

Detected URL:

`; document.getElementById('load-url-btn').onclick = async () => { // Simulate file upload from URL - Gradio's Image component handles URLs directly const element = document.querySelector('#input-image input[type="file"]'); // Can't directly set URL to file input, so we pass it to Gradio fn // Or maybe update the image display src directly if possible? // Let Gradio handle the URL - user needs to click predict // We can pre-fill the image component if Gradio supports it via JS, // but it's simpler to just let the user click predict after pasting URL. alert("URL detected. Please ensure the image input is cleared and then press 'Predict' or re-upload the image."); // Clear current image preview if possible? // A workaround: display the URL and let the user manually trigger prediction // Or, try to use Gradio's JS API if available to update the Image component value // For now, just inform the user. }; return; // Don't process as image paste if URL is found } } var items = evt.clipboardData.items; for (var i = 0; i < items.length; i++) { if (items[i].type.indexOf("image") === 0) { var blob = items[i].getAsFile(); var reader = new FileReader(); reader.onload = function(event){ // Update the Gradio Image component source directly const imgElement = document.querySelector('#input-image img'); // Find the img tag inside the component if (imgElement) { imgElement.src = event.target.result; // We still need to pass the blob to the Gradio function // Use Gradio's JS API or hidden components if possible // For now, let's use a simple alert and rely on manual trigger alert("Image pasted. The preview should update. Please press 'Predict'."); // Trigger paste_image function - requires Gradio JS interaction // This part is tricky without official Gradio JS API for updates } }; reader.readAsDataURL(blob); // Prevent default paste handling evt.preventDefault(); break; } } } document.addEventListener('paste', paste_update); """ with gr.Blocks(css=css, js=js) as demo: gr.Markdown("# WD EVA02 LoRA ONNX Tagger") gr.Markdown("Upload an image or paste an image URL to predict tags using the fine-tuned WD EVA02 Tagger model (ONNX format).") gr.Markdown(f"Model Repository: [{REPO_ID}](https://huggingface.co/{REPO_ID})") with gr.Row(): with gr.Column(scale=1): # Use elem_id for JS targeting image_input = gr.Image(type="pil", label="Input Image", elem_id="input-image") # Container for URL paste message gr.HTML("
") gen_threshold = gr.Slider(minimum=0.0, maximum=1.0, step=0.05, value=0.55, label="General Tag Threshold") char_threshold = gr.Slider(minimum=0.0, maximum=1.0, step=0.05, value=0.60, label="Character/Copyright/Artist Tag Threshold") output_mode = gr.Radio(choices=["Tags Only", "Tags + Visualization"], value="Tags + Visualization", label="Output Mode") predict_button = gr.Button("Predict", variant="primary") with gr.Column(scale=1): output_tags = gr.Textbox(label="Predicted Tags", lines=10) output_visualization = gr.Image(type="pil", label="Prediction Visualization") # Examples gr.Examples( examples=[ ["https://pbs.twimg.com/media/GpiBUQZawAAetgr.jpg", 0.55, 0.5, "Tags + Visualization"], ["https://pbs.twimg.com/media/GooBBQHWcAAJj2q.jpg", 0.5, 0.5, "Tags Only"], ["https://m.media-amazon.com/images/I/61FwAqFu4PL.jpg", 0.55, 0.5, "Tags + Visualization"], ["https://cdn.donmai.us/sample/5d/ad/__kanae_and_kanae_nijisanji_drawn_by_cococall__sample-5dadca17680ef18c18daaf75507c4b12.jpg", 0.45, 0.45, "Tags + Visualization"] ], inputs=[image_input, gen_threshold, char_threshold, output_mode], outputs=[output_tags, output_visualization], fn=predict, cache_examples=False # Slows down startup if True and large examples ) predict_button.click( fn=predict, inputs=[image_input, gen_threshold, char_threshold, output_mode], outputs=[output_tags, output_visualization] ) # Add listener for image input changes (e.g., from pasting) # This might trigger prediction automatically or require the button click # image_input.change( # fn=predict, # inputs=[image_input, gen_threshold, char_threshold, output_mode], # outputs=[output_tags, output_visualization] # ) if __name__ == "__main__": # 環境変数HF_TOKENがない場合に警告(プライベートリポジトリ用) if not os.environ.get("HF_TOKEN"): print("Warning: HF_TOKEN environment variable not set. Downloads from private repositories may fail.") # Initialize model on startup to avoid delay on first prediction initialize_model() demo.launch()