ContingPeople / app.py
cesar's picture
Update app.py
ac8349b verified
raw
history blame
2.58 kB
# app.py
import cv2
import gradio as gr
from ultralytics import YOLO
# ── Config ─────────────────────────────────────────────
MODEL_PATH = "yolov8n.pt" # modelo pre-entrenado (COCO, clase “person”)
CONF_THRES = 0.3 # confianza mínima
LINE_RATIO = 0.5 # línea virtual en mitad de la altura
# ───────────────────────────────────────────────────────
model = YOLO(MODEL_PATH)
# Estado global para entradas/salidas
memory = {} # {track_id: previous_cy}
in_count = 0
out_count = 0
def count_people(frame):
global memory, in_count, out_count
h, w = frame.shape[:2]
line_y = int(h * LINE_RATIO)
# detección + tracking interno (ByteTrack)
results = model.track(
frame,
classes=[0], # solo “person”
conf=CONF_THRES,
persist=True,
verbose=False
)
annotated = frame.copy()
cv2.line(annotated, (0, line_y), (w, line_y), (0, 255, 255), 2)
if results:
for box in results[0].boxes:
x1, y1, x2, y2 = map(int, box.xyxy[0])
cx, cy = int((x1 + x2) / 2), int((y1 + y2) / 2)
tid = int(box.id[0]) if box.id is not None else -1
# lógica de cruce
prev_cy = memory.get(tid, cy)
if prev_cy < line_y <= cy: # entra
in_count += 1
elif prev_cy > line_y >= cy: # sale
out_count += 1
memory[tid] = cy
# dibujo
cv2.rectangle(annotated, (x1, y1), (x2, y2), (0, 255, 0), 1)
cv2.circle(annotated, (cx, cy), 3, (0, 0, 255), -1)
cv2.putText(annotated, str(tid), (x1, y1 - 5),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 1)
total = in_count - out_count
cv2.putText(
annotated,
f"In: {in_count} Out: {out_count} Ocupación: {total}",
(10, 30),
cv2.FONT_HERSHEY_SIMPLEX,
1,
(255, 255, 255),
2
)
return annotated, f"In: {in_count} | Out: {out_count} | Ocupación: {total}"
demo = gr.Interface(
fn=count_people,
inputs=gr.Image(sources=["webcam"], streaming=True), # 👈 parámetro correcto
outputs=[gr.Image(label="Video"), gr.Text(label="Contador")],
live=True,
title="Contador de personas (entrada única)"
)
if __name__ == "__main__":
demo.launch()