Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Delete app.py
Browse files
    	
        app.py
    DELETED
    
    | 
         @@ -1,100 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            # -*- coding: utf-8 -*-
         
     | 
| 2 | 
         
            -
            """Deploy Barcelo demo.ipynb
         
     | 
| 3 | 
         
            -
             
     | 
| 4 | 
         
            -
            Automatically generated by Colaboratory.
         
     | 
| 5 | 
         
            -
             
     | 
| 6 | 
         
            -
            Original file is located at
         
     | 
| 7 | 
         
            -
                https://colab.research.google.com/drive/1FxaL8DcYgvjPrWfWruSA5hvk3J81zLY9
         
     | 
| 8 | 
         
            -
             
     | 
| 9 | 
         
            -
            
         
     | 
| 10 | 
         
            -
             
     | 
| 11 | 
         
            -
            # Modelo
         
     | 
| 12 | 
         
            -
             
     | 
| 13 | 
         
            -
            YOLO es una familia de modelos de detecci贸n de objetos a escala compuesta entrenados en COCO dataset, e incluye una funcionalidad simple para Test Time Augmentation (TTA), model ensembling, hyperparameter evolution, and export to ONNX, CoreML and TFLite.
         
     | 
| 14 | 
         
            -
             
     | 
| 15 | 
         
            -
             
     | 
| 16 | 
         
            -
            ## Gradio Inferencia
         
     | 
| 17 | 
         
            -
             
     | 
| 18 | 
         
            -
            
         
     | 
| 19 | 
         
            -
             
     | 
| 20 | 
         
            -
            Este Notebook se acelera opcionalmente con un entorno de ejecuci贸n de GPU
         
     | 
| 21 | 
         
            -
             
     | 
| 22 | 
         
            -
             
     | 
| 23 | 
         
            -
            ----------------------------------------------------------------------
         
     | 
| 24 | 
         
            -
             
     | 
| 25 | 
         
            -
             YOLOv5 Gradio demo
         
     | 
| 26 | 
         
            -
             
     | 
| 27 | 
         
            -
            *Author: Ultralytics LLC and Gradio*
         
     | 
| 28 | 
         
            -
             
     | 
| 29 | 
         
            -
            # C贸digo
         
     | 
| 30 | 
         
            -
            """
         
     | 
| 31 | 
         
            -
             
     | 
| 32 | 
         
            -
            #!pip install -qr https://raw.githubusercontent.com/ultralytics/yolov5/master/requirements.txt gradio # install dependencies
         
     | 
| 33 | 
         
            -
             
     | 
| 34 | 
         
            -
            import gradio as gr
         
     | 
| 35 | 
         
            -
            import torch
         
     | 
| 36 | 
         
            -
            from PIL import Image
         
     | 
| 37 | 
         
            -
             
     | 
| 38 | 
         
            -
            # Images
         
     | 
| 39 | 
         
            -
            torch.hub.download_url_to_file('https://i.pinimg.com/originals/7f/5e/96/7f5e9657c08aae4bcd8bc8b0dcff720e.jpg', 'ejemplo1.jpg')
         
     | 
| 40 | 
         
            -
            torch.hub.download_url_to_file('https://i.pinimg.com/originals/c2/ce/e0/c2cee05624d5477ffcf2d34ca77b47d1.jpg', 'ejemplo2.jpg')
         
     | 
| 41 | 
         
            -
             
     | 
| 42 | 
         
            -
            # Model
         
     | 
| 43 | 
         
            -
            #model = torch.hub.load('ultralytics/yolov5', 'yolov5s')  # force_reload=True to update
         
     | 
| 44 | 
         
            -
             
     | 
| 45 | 
         
            -
            #model = torch.hub.load('ultralytics/yolov5', 'custom', path='best.pt')  # local model  o google colab
         
     | 
| 46 | 
         
            -
            model = torch.hub.load('ultralytics/yolov5', 'custom', path='best.pt', force_reload=True, autoshape=True)  # local model  o google colab
         
     | 
| 47 | 
         
            -
            #model = torch.hub.load('path/to/yolov5', 'custom', path='/content/yolov56.pt', source='local')  # local repo
         
     | 
| 48 | 
         
            -
             
     | 
| 49 | 
         
            -
             
     | 
| 50 | 
         
            -
            def yolo(size, iou, conf, im):
         
     | 
| 51 | 
         
            -
                '''Wrapper fn for gradio'''
         
     | 
| 52 | 
         
            -
                g = (int(size) / max(im.size))  # gain
         
     | 
| 53 | 
         
            -
                im = im.resize((int(x * g) for x in im.size), Image.ANTIALIAS)  # resize
         
     | 
| 54 | 
         
            -
             
     | 
| 55 | 
         
            -
                model.iou = iou
         
     | 
| 56 | 
         
            -
                
         
     | 
| 57 | 
         
            -
                model.conf = conf
         
     | 
| 58 | 
         
            -
             
     | 
| 59 | 
         
            -
               
         
     | 
| 60 | 
         
            -
                results2 = model(im)  # inference
         
     | 
| 61 | 
         
            -
               
         
     | 
| 62 | 
         
            -
                results2.render()  # updates results.imgs with boxes and labels
         
     | 
| 63 | 
         
            -
                return Image.fromarray(results2.ims[0])
         
     | 
| 64 | 
         
            -
             
     | 
| 65 | 
         
            -
            #------------ Interface-------------
         
     | 
| 66 | 
         
            -
             
     | 
| 67 | 
         
            -
             
     | 
| 68 | 
         
            -
             
     | 
| 69 | 
         
            -
            in1 = gr.inputs.Radio(['640', '1280'], label="Tama帽o de la imagen", default='640', type='value')
         
     | 
| 70 | 
         
            -
            in2 = gr.inputs.Slider(minimum=0, maximum=1, step=0.05, default=0.45, label='NMS IoU threshold')
         
     | 
| 71 | 
         
            -
            in3 = gr.inputs.Slider(minimum=0, maximum=1, step=0.05, default=0.50, label='Umbral o  threshold')
         
     | 
| 72 | 
         
            -
            in4 = gr.inputs.Image(type='pil', label="Original Image")
         
     | 
| 73 | 
         
            -
             
     | 
| 74 | 
         
            -
            out2 = gr.outputs.Image(type="pil", label="YOLOv5")
         
     | 
| 75 | 
         
            -
            #-------------- Text-----
         
     | 
| 76 | 
         
            -
            title = 'Trampas Barcel贸'
         
     | 
| 77 | 
         
            -
            description = """
         
     | 
| 78 | 
         
            -
            <p>
         
     | 
| 79 | 
         
            -
            <center>
         
     | 
| 80 | 
         
            -
            Sistemas de Desarrollado por Subsecretar铆a de Innovaci贸n del Municipio de Vicente L贸pez. Advertencia solo usar fotos provenientes de las trampas Barcel贸, no de celular o foto de internet.
         
     | 
| 81 | 
         
            -
            <img src="https://www.vicentelopez.gov.ar/assets/images/logo-mvl.png" alt="logo" width="250"/>
         
     | 
| 82 | 
         
            -
            </center>
         
     | 
| 83 | 
         
            -
            </p>
         
     | 
| 84 | 
         
            -
            """
         
     | 
| 85 | 
         
            -
            article ="<p style='text-align: center'><a href='https://docs.google.com/presentation/d/1T5CdcLSzgRe8cQpoi_sPB4U170551NGOrZNykcJD0xU/edit?usp=sharing' target='_blank'>Para mas info, clik para ir al white paper</a></p><p style='text-align: center'><a href='https://drive.google.com/drive/folders/1owACN3HGIMo4zm2GQ_jf-OhGNeBVRS7l?usp=sharing ' target='_blank'>Google Colab Demo</a></p><p style='text-align: center'><a href='https://github.com/Municipalidad-de-Vicente-Lopez/Trampa_Barcelo' target='_blank'>Repo Github</a></p></center></p>"
         
     | 
| 86 | 
         
            -
                      
         
     | 
| 87 | 
         
            -
            examples = [['640',0.45, 0.75,'ejemplo1.jpg'], ['640',0.45, 0.75,'ejemplo2.jpg']]
         
     | 
| 88 | 
         
            -
             
     | 
| 89 | 
         
            -
            iface = gr.Interface(yolo, inputs=[in1, in2, in3, in4], outputs=out2, title=title, description=description, article=article, examples=examples,theme="huggingface", analytics_enabled=False).launch(
         
     | 
| 90 | 
         
            -
                debug=True)
         
     | 
| 91 | 
         
            -
             
     | 
| 92 | 
         
            -
            iface.launch()
         
     | 
| 93 | 
         
            -
             
     | 
| 94 | 
         
            -
            """For YOLOv5 PyTorch Hub inference with **PIL**, **OpenCV**, **Numpy** or **PyTorch** inputs please see the full [YOLOv5 PyTorch Hub Tutorial](https://github.com/ultralytics/yolov5/issues/36).
         
     | 
| 95 | 
         
            -
             
     | 
| 96 | 
         
            -
             
     | 
| 97 | 
         
            -
            ## Citation
         
     | 
| 98 | 
         
            -
             
     | 
| 99 | 
         
            -
            [](https://zenodo.org/badge/latestdoi/264818686)
         
     | 
| 100 | 
         
            -
            """
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         |