Spaces:
Sleeping
Sleeping
File size: 46,373 Bytes
e1ff5d6 e36284f e1ff5d6 e36284f 7810a88 81fa7f6 7810a88 e1ff5d6 7810a88 e1ff5d6 c54a4c8 e1ff5d6 81fa7f6 e1ff5d6 7810a88 e1ff5d6 7810a88 81fa7f6 7810a88 81fa7f6 7810a88 81fa7f6 7810a88 81fa7f6 7810a88 81fa7f6 7810a88 81fa7f6 7810a88 81fa7f6 7810a88 81fa7f6 7810a88 81fa7f6 7810a88 81fa7f6 7810a88 81fa7f6 7810a88 81fa7f6 7810a88 81fa7f6 7810a88 81fa7f6 7810a88 81fa7f6 7810a88 81fa7f6 7810a88 81fa7f6 7810a88 81fa7f6 7810a88 e1ff5d6 c54a4c8 fea2fe4 c54a4c8 fea2fe4 c54a4c8 fea2fe4 c54a4c8 fea2fe4 c54a4c8 fea2fe4 c54a4c8 fea2fe4 c54a4c8 fea2fe4 c54a4c8 fea2fe4 c54a4c8 fea2fe4 c54a4c8 fea2fe4 c54a4c8 e1ff5d6 c54a4c8 e1ff5d6 c54a4c8 e1ff5d6 c54a4c8 e1ff5d6 e36284f e1ff5d6 7810a88 e1ff5d6 7810a88 e1ff5d6 7810a88 e1ff5d6 c54a4c8 e36284f c54a4c8 e36284f c54a4c8 e1ff5d6 c54a4c8 e36284f e1ff5d6 7810a88 e1ff5d6 7810a88 e1ff5d6 c54a4c8 e1ff5d6 7810a88 e1ff5d6 c54a4c8 7810a88 4ac6a9c e1ff5d6 81fa7f6 7810a88 4ac6a9c e1ff5d6 4ac6a9c e1ff5d6 c54a4c8 e1ff5d6 4ac6a9c 81fa7f6 4ac6a9c e1ff5d6 7810a88 e1ff5d6 7810a88 e1ff5d6 c54a4c8 e1ff5d6 7810a88 c54a4c8 e1ff5d6 7810a88 e1ff5d6 c54a4c8 e1ff5d6 7810a88 c54a4c8 e1ff5d6 7810a88 81fa7f6 7810a88 81fa7f6 7810a88 e1ff5d6 7810a88 e1ff5d6 7810a88 e1ff5d6 7810a88 e1ff5d6 7810a88 e1ff5d6 7810a88 e1ff5d6 7810a88 e1ff5d6 7810a88 e1ff5d6 7810a88 e1ff5d6 7810a88 e1ff5d6 7810a88 e1ff5d6 c54a4c8 e1ff5d6 7810a88 81fa7f6 7810a88 81fa7f6 7810a88 e1ff5d6 7810a88 c54a4c8 e1ff5d6 7810a88 e1ff5d6 7810a88 e1ff5d6 7810a88 39aace3 7810a88 39aace3 7810a88 39aace3 7810a88 39aace3 7810a88 39aace3 7810a88 39aace3 7810a88 c54a4c8 7810a88 39aace3 7810a88 c54a4c8 7810a88 e1ff5d6 7810a88 e1ff5d6 7810a88 e1ff5d6 7810a88 e1ff5d6 7810a88 e1ff5d6 7810a88 e1ff5d6 7810a88 e1ff5d6 7810a88 e1ff5d6 7810a88 e1ff5d6 7810a88 e1ff5d6 7810a88 e1ff5d6 7810a88 e1ff5d6 7810a88 e1ff5d6 7810a88 e1ff5d6 7810a88 e1ff5d6 7810a88 c54a4c8 e1ff5d6 c54a4c8 7810a88 81fa7f6 7810a88 c54a4c8 81fa7f6 c54a4c8 e36284f 81fa7f6 e1ff5d6 7810a88 e1ff5d6 e36284f c54a4c8 e36284f e1ff5d6 e36284f 7810a88 e1ff5d6 c54a4c8 e4a088a e1ff5d6 e4a088a e1ff5d6 e4a088a e1ff5d6 e4a088a e1ff5d6 e4a088a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 |
import os
import time
import torch
import random
import numpy as np
import soundfile as sf
import tempfile
import uuid
import logging
import requests
import io
import json
import base64
from typing import Optional, Dict, Any, List
from pathlib import Path
import gradio as gr
import spaces
from fastapi import FastAPI, HTTPException, UploadFile, File
from fastapi.responses import StreamingResponse
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Device configuration
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
logger.info(f"π Running on device: {DEVICE}")
# Global model variable
MODEL = None
CHATTERBOX_AVAILABLE = False
# Storage directories - use persistent storage if available
if os.path.exists("/data"):
# Hugging Face Spaces persistent storage
VOICES_DIR = "/data/custom_voices"
AUDIO_DIR = "/data/generated_audio"
logger.info("β
Using Hugging Face Spaces persistent storage (/data)")
else:
# Fallback to local storage
VOICES_DIR = "custom_voices"
AUDIO_DIR = "generated_audio"
logger.warning("β οΈ Using local storage (voices will not persist)")
os.makedirs(AUDIO_DIR, exist_ok=True)
os.makedirs(VOICES_DIR, exist_ok=True)
# Voice storage
audio_cache = {}
voice_library = {}
# Default/Built-in voices
BUILTIN_VOICES = {
"female_default": {
"voice_id": "female_default",
"name": "Female Default",
"description": "Professional female voice",
"audio_url": "https://storage.googleapis.com/chatterbox-demo-samples/prompts/female_shadowheart4.flac",
"type": "builtin",
"created_at": "2024-01-01T00:00:00Z"
},
"male_professional": {
"voice_id": "male_professional",
"name": "Male Professional",
"description": "Confident male voice",
"audio_url": "https://storage.googleapis.com/chatterbox-demo-samples/prompts/male_professional.flac",
"type": "builtin",
"created_at": "2024-01-01T00:00:00Z"
}
}
def encode_audio_to_base64(audio_data, sample_rate):
"""Encode audio data to base64 string for storage"""
try:
# Create temporary file
temp_file = tempfile.NamedTemporaryFile(suffix=".wav", delete=False)
sf.write(temp_file.name, audio_data, sample_rate)
# Read as bytes and encode
with open(temp_file.name, 'rb') as f:
audio_bytes = f.read()
# Cleanup temp file
os.unlink(temp_file.name)
# Encode to base64
return base64.b64encode(audio_bytes).decode('utf-8')
except Exception as e:
logger.error(f"Error encoding audio: {e}")
return None
def decode_audio_from_base64(base64_string):
"""Decode base64 string back to audio file"""
try:
# Decode base64
audio_bytes = base64.b64decode(base64_string.encode('utf-8'))
# Create temporary file
temp_file = tempfile.NamedTemporaryFile(suffix=".wav", delete=False)
temp_file.write(audio_bytes)
temp_file.close()
return temp_file.name
except Exception as e:
logger.error(f"Error decoding audio: {e}")
return None
def load_voice_library():
"""Load saved custom voices from persistent storage"""
global voice_library
voice_library = BUILTIN_VOICES.copy()
voices_json_path = os.path.join(VOICES_DIR, "voices.json")
try:
if os.path.exists(voices_json_path):
with open(voices_json_path, 'r', encoding='utf-8') as f:
custom_voices = json.load(f)
voice_library.update(custom_voices)
logger.info(f"β
Loaded {len(custom_voices)} custom voices from persistent storage")
else:
logger.info("π No existing voice library found, starting fresh")
# Log voice library status
total_voices = len(voice_library)
custom_count = len([v for v in voice_library.values() if v.get("type") == "custom"])
builtin_count = len([v for v in voice_library.values() if v.get("type") == "builtin"])
logger.info(f"π Voice Library: {total_voices} total ({builtin_count} builtin, {custom_count} custom)")
except Exception as e:
logger.error(f"β Error loading voice library: {e}")
logger.info("π Starting with builtin voices only")
def save_voice_library():
"""Save custom voices to persistent storage"""
try:
# Only save custom voices (not builtin)
custom_voices = {k: v for k, v in voice_library.items() if v.get("type") != "builtin"}
voices_json_path = os.path.join(VOICES_DIR, "voices.json")
# Ensure directory exists
os.makedirs(os.path.dirname(voices_json_path), exist_ok=True)
with open(voices_json_path, 'w', encoding='utf-8') as f:
json.dump(custom_voices, f, ensure_ascii=False, indent=2)
logger.info(f"β
Saved {len(custom_voices)} custom voices to persistent storage")
logger.info(f"π Storage location: {voices_json_path}")
# Verify the save worked
if os.path.exists(voices_json_path):
file_size = os.path.getsize(voices_json_path)
logger.info(f"π Voice library file size: {file_size} bytes")
except Exception as e:
logger.error(f"β Error saving voice library: {e}")
logger.error(f"π Attempted path: {voices_json_path}")
def create_voice_from_audio(audio_file, voice_name, voice_description="Custom voice"):
"""Create a new voice from uploaded audio with persistent storage"""
try:
voice_id = f"voice_{int(time.time())}_{uuid.uuid4().hex[:8]}"
# Handle different audio input formats
if isinstance(audio_file, tuple):
# Gradio audio format (sample_rate, audio_data)
sample_rate, audio_data = audio_file
else:
# File path - load the audio
audio_data, sample_rate = sf.read(audio_file)
# Encode audio to base64 for persistent storage
audio_base64 = encode_audio_to_base64(audio_data, sample_rate)
if audio_base64 is None:
raise ValueError("Failed to encode audio")
# Create voice entry with embedded audio
voice_entry = {
"voice_id": voice_id,
"name": voice_name,
"description": voice_description,
"audio_base64": audio_base64, # Store audio as base64
"sample_rate": int(sample_rate),
"type": "custom",
"created_at": time.strftime("%Y-%m-%dT%H:%M:%SZ"),
"audio_duration": len(audio_data) / sample_rate
}
# Add to voice library
voice_library[voice_id] = voice_entry
# Save to persistent storage
save_voice_library()
logger.info(f"β
Created persistent voice: {voice_name} ({voice_id})")
logger.info(f"π΅ Audio: {len(audio_data)} samples, {sample_rate}Hz, {voice_entry['audio_duration']:.2f}s")
return voice_id, voice_entry
except Exception as e:
logger.error(f"β Error creating voice: {e}")
return None, None
def download_audio_from_url(url):
"""Download audio from URL and save to temporary file"""
try:
logger.info(f"π₯ Downloading reference audio from: {url}")
response = requests.get(url, timeout=30, headers={
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'
})
if response.status_code == 200:
# Create temporary file
temp_file = tempfile.NamedTemporaryFile(suffix=".flac", delete=False)
temp_file.write(response.content)
temp_file.close()
logger.info(f"β
Audio downloaded to: {temp_file.name}")
return temp_file.name
else:
logger.error(f"β HTTP {response.status_code} when downloading audio")
return None
except Exception as e:
logger.error(f"β Error downloading audio from URL: {e}")
return None
def get_voice_audio_path(voice_id):
"""Get the audio path for a voice (decode from base64 if custom, download if builtin)"""
if voice_id not in voice_library:
return None
voice_info = voice_library[voice_id]
# If it's a custom voice with base64 audio
if voice_info.get("type") == "custom" and "audio_base64" in voice_info:
# Decode base64 to temporary file
temp_path = decode_audio_from_base64(voice_info["audio_base64"])
if temp_path:
logger.info(f"β
Decoded custom voice audio: {voice_info['name']}")
return temp_path
else:
logger.warning(f"β οΈ Failed to decode audio for voice {voice_id}")
return None
# If it's a legacy custom voice with file path (for backward compatibility)
elif voice_info.get("type") == "custom" and "audio_path" in voice_info:
audio_path = voice_info["audio_path"]
if os.path.exists(audio_path):
return audio_path
else:
logger.warning(f"β οΈ Voice audio file not found: {audio_path}")
return None
# If it's a builtin voice with URL
elif voice_info.get("type") == "builtin" and "audio_url" in voice_info:
return download_audio_from_url(voice_info["audio_url"])
return None
def load_chatterbox_model():
"""Try multiple ways to load ChatterboxTTS from Resemble AI"""
global MODEL, CHATTERBOX_AVAILABLE
# Method 1: Try Resemble AI ChatterboxTTS (most likely)
try:
from chatterbox.src.chatterbox.tts import ChatterboxTTS
logger.info("β
Found Resemble AI ChatterboxTTS in chatterbox.src.chatterbox.tts")
MODEL = ChatterboxTTS.from_pretrained(DEVICE)
CHATTERBOX_AVAILABLE = True
return True
except ImportError as e:
logger.warning(f"Method 1 (Resemble AI standard path) failed: {e}")
except Exception as e:
logger.warning(f"Method 1 failed with error: {e}")
# Method 2: Try alternative import path for Resemble AI repo
try:
from chatterbox.tts import ChatterboxTTS
logger.info("β
Found ChatterboxTTS in chatterbox.tts")
MODEL = ChatterboxTTS.from_pretrained(DEVICE)
CHATTERBOX_AVAILABLE = True
return True
except ImportError as e:
logger.warning(f"Method 2 failed: {e}")
except Exception as e:
logger.warning(f"Method 2 failed with error: {e}")
# Method 3: Try direct chatterbox import
try:
import chatterbox
if hasattr(chatterbox, 'ChatterboxTTS'):
MODEL = chatterbox.ChatterboxTTS.from_pretrained(DEVICE)
elif hasattr(chatterbox, 'tts') and hasattr(chatterbox.tts, 'ChatterboxTTS'):
MODEL = chatterbox.tts.ChatterboxTTS.from_pretrained(DEVICE)
else:
raise ImportError("ChatterboxTTS not found in chatterbox module")
logger.info("β
Found ChatterboxTTS via direct import")
CHATTERBOX_AVAILABLE = True
return True
except ImportError as e:
logger.warning(f"Method 3 failed: {e}")
except Exception as e:
logger.warning(f"Method 3 failed with error: {e}")
# If we get here, the GitHub repo might have a different structure
logger.error("β Could not load ChatterboxTTS from Resemble AI repository")
logger.error("π‘ The GitHub repo might have a different structure than expected")
logger.error("π Repository: https://github.com/resemble-ai/chatterbox.git")
logger.error("π Check the repo's README for correct import instructions")
return False
def get_or_load_model():
"""Load ChatterboxTTS model if not already loaded"""
global MODEL
if MODEL is None:
logger.info("Loading ChatterboxTTS model...")
success = load_chatterbox_model()
if success:
if hasattr(MODEL, 'to'):
MODEL.to(DEVICE)
logger.info("β
ChatterboxTTS model loaded successfully")
else:
logger.error("β Failed to load ChatterboxTTS - using fallback")
create_fallback_model()
return MODEL
def create_fallback_model():
"""Create a fallback model that explains the issue"""
global MODEL
class FallbackChatterboxTTS:
def __init__(self, device="cpu"):
self.device = device
self.sr = 24000
@classmethod
def from_pretrained(cls, device):
return cls(device)
def to(self, device):
self.device = device
return self
def generate(self, text, audio_prompt_path=None, exaggeration=0.5,
temperature=0.8, cfg_weight=0.5):
logger.warning("π¨ USING FALLBACK MODEL - Real ChatterboxTTS not found!")
logger.warning(f"π Text to synthesize: {text[:50]}...")
# Generate a more obvious fallback sound
duration = 2.0 # Fixed 2 seconds
t = np.linspace(0, duration, int(self.sr * duration))
# Create a distinctive "missing model" sound pattern
# Three beeps to indicate this is a fallback
beep_freq = 800 # Higher frequency beep
beep_pattern = np.zeros_like(t)
# Three short beeps
for i in range(3):
start_time = i * 0.6
end_time = start_time + 0.2
mask = (t >= start_time) & (t < end_time)
beep_pattern[mask] = 0.3 * np.sin(2 * np.pi * beep_freq * t[mask])
return torch.tensor(beep_pattern).unsqueeze(0)
MODEL = FallbackChatterboxTTS(DEVICE)
def set_seed(seed: int):
"""Set random seed for reproducibility"""
torch.manual_seed(seed)
if DEVICE == "cuda":
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
random.seed(seed)
np.random.seed(seed)
def generate_id():
"""Generate unique ID"""
return str(uuid.uuid4())
# Load voice library at startup
load_voice_library()
# Pydantic models for API
class TTSRequest(BaseModel):
text: str
voice_id: Optional[str] = "female_default"
exaggeration: Optional[float] = 0.5
temperature: Optional[float] = 0.8
cfg_weight: Optional[float] = 0.5
seed: Optional[int] = 0
class VoiceCreateRequest(BaseModel):
voice_name: str
voice_description: Optional[str] = "Custom voice"
class VoiceInfo(BaseModel):
voice_id: str
name: str
description: str
type: str
created_at: str
class TTSResponse(BaseModel):
success: bool
audio_id: Optional[str] = None
message: str
sample_rate: Optional[int] = None
duration: Optional[float] = None
# Load model at startup
try:
get_or_load_model()
if CHATTERBOX_AVAILABLE:
logger.info("β
Real ChatterboxTTS model loaded successfully")
else:
logger.warning("β οΈ Using fallback model - Upload ChatterboxTTS package for real synthesis")
except Exception as e:
logger.error(f"Failed to load any model: {e}")
MODEL = None
@spaces.GPU
def generate_tts_audio(
text_input: str,
voice_id: str,
exaggeration_input: float,
temperature_input: float,
seed_num_input: int,
cfgw_input: float
) -> tuple[int, np.ndarray]:
"""
Generate TTS audio using ChatterboxTTS model with voice ID
"""
current_model = get_or_load_model()
if current_model is None:
raise RuntimeError("No TTS model available")
if seed_num_input != 0:
set_seed(int(seed_num_input))
logger.info(f"π΅ Generating audio for: '{text_input[:50]}...'")
logger.info(f"π Using voice: {voice_id}")
if not CHATTERBOX_AVAILABLE:
logger.warning("π¨ USING FALLBACK - Real ChatterboxTTS not found!")
# Get audio path for the voice
audio_prompt_path = get_voice_audio_path(voice_id)
temp_audio_file = None
try:
# Get audio path for the voice
audio_prompt_path = get_voice_audio_path(voice_id)
temp_audio_file = None
# Check if we got a temporary file (from base64 decode or URL download)
if audio_prompt_path and (audio_prompt_path.startswith('/tmp/') or 'temp' in audio_prompt_path):
temp_audio_file = audio_prompt_path
if audio_prompt_path:
voice_name = voice_library.get(voice_id, {}).get("name", voice_id)
logger.info(f"β
Using voice '{voice_name}' audio: {audio_prompt_path}")
else:
logger.warning(f"β οΈ Could not load audio for voice {voice_id}, using default")
# Generate audio
wav = current_model.generate(
text_input[:300], # Limit text length
audio_prompt_path=audio_prompt_path,
exaggeration=exaggeration_input,
temperature=temperature_input,
cfg_weight=cfgw_input,
)
if CHATTERBOX_AVAILABLE:
logger.info("β
Real ChatterboxTTS audio generation complete")
else:
logger.warning("β οΈ Fallback audio generated - upload ChatterboxTTS for real synthesis")
return (current_model.sr, wav.squeeze(0).numpy())
except Exception as e:
logger.error(f"β Audio generation failed: {e}")
raise
finally:
# Clean up temporary file (only if it's a downloaded URL or decoded audio)
if temp_audio_file and os.path.exists(temp_audio_file):
try:
os.unlink(temp_audio_file)
logger.info(f"ποΈ Cleaned up temporary file: {temp_audio_file}")
except:
pass
# FastAPI app for API endpoints
app = FastAPI(
title="ChatterboxTTS Voice Manager API",
description="Advanced text-to-speech with voice cloning and management",
version="2.0.0"
)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.get("/")
async def root():
"""API status endpoint"""
return {
"service": "ChatterboxTTS Voice Manager API",
"version": "2.0.0",
"status": "operational" if MODEL else "model_loading",
"model_loaded": MODEL is not None,
"real_chatterbox": CHATTERBOX_AVAILABLE,
"device": DEVICE,
"voices_available": len(voice_library),
"message": "Real ChatterboxTTS loaded" if CHATTERBOX_AVAILABLE else "Using fallback - upload ChatterboxTTS package",
"endpoints": {
"synthesize": "/api/tts/synthesize",
"voices": "/api/voices",
"create_voice": "/api/voices/create",
"audio": "/api/audio/{audio_id}",
"health": "/health"
}
}
@app.get("/health")
async def health_check():
"""Health check endpoint"""
return {
"status": "healthy" if MODEL else "unhealthy",
"model_loaded": MODEL is not None,
"real_chatterbox": CHATTERBOX_AVAILABLE,
"device": DEVICE,
"voices_total": len(voice_library),
"timestamp": time.time(),
"warning": None if CHATTERBOX_AVAILABLE else "Using fallback model - upload ChatterboxTTS for production"
}
@app.get("/api/voices")
async def get_voices():
"""Get all available voices"""
voices = []
for voice_id, voice_info in voice_library.items():
voices.append(VoiceInfo(
voice_id=voice_id,
name=voice_info["name"],
description=voice_info["description"],
type=voice_info["type"],
created_at=voice_info["created_at"]
))
return {
"voices": voices,
"total": len(voices),
"builtin": len([v for v in voices if v.type == "builtin"]),
"custom": len([v for v in voices if v.type == "custom"])
}
@app.post("/api/voices/create")
async def create_voice_api(
voice_name: str,
voice_description: str = "Custom voice",
audio_file: UploadFile = File(...)
):
"""Create a new voice from uploaded audio"""
try:
# Read uploaded file
audio_data = await audio_file.read()
# Save to temporary file for processing
temp_file = tempfile.NamedTemporaryFile(suffix=".wav", delete=False)
temp_file.write(audio_data)
temp_file.close()
# Create voice
voice_id, voice_entry = create_voice_from_audio(
temp_file.name,
voice_name,
voice_description
)
# Cleanup temp file
os.unlink(temp_file.name)
if voice_id:
return {
"success": True,
"voice_id": voice_id,
"message": f"Voice '{voice_name}' created successfully",
"voice_info": voice_entry
}
else:
raise HTTPException(status_code=500, detail="Failed to create voice")
except Exception as e:
logger.error(f"β Voice creation failed: {e}")
raise HTTPException(status_code=500, detail=f"Voice creation failed: {str(e)}")
@app.delete("/api/voices/{voice_id}")
async def delete_voice(voice_id: str):
"""Delete a custom voice"""
if voice_id not in voice_library:
raise HTTPException(status_code=404, detail="Voice not found")
voice_info = voice_library[voice_id]
if voice_info.get("type") == "builtin":
raise HTTPException(status_code=400, detail="Cannot delete builtin voices")
try:
# Delete legacy audio file if it exists
if "audio_path" in voice_info and os.path.exists(voice_info["audio_path"]):
os.unlink(voice_info["audio_path"])
# Remove from library
voice_name = voice_info["name"]
del voice_library[voice_id]
save_voice_library()
logger.info(f"β
Deleted voice: {voice_name} ({voice_id})")
return {
"success": True,
"message": f"Voice '{voice_name}' deleted successfully"
}
except Exception as e:
logger.error(f"β Voice deletion failed: {e}")
raise HTTPException(status_code=500, detail=f"Voice deletion failed: {str(e)}")
@app.post("/api/tts/synthesize", response_model=TTSResponse)
async def synthesize_speech(request: TTSRequest):
"""
Synthesize speech from text using voice ID
"""
try:
if MODEL is None:
raise HTTPException(status_code=503, detail="Model not loaded")
if not request.text.strip():
raise HTTPException(status_code=400, detail="Text cannot be empty")
if len(request.text) > 500:
raise HTTPException(status_code=400, detail="Text too long (max 500 characters)")
if request.voice_id not in voice_library:
raise HTTPException(status_code=404, detail=f"Voice '{request.voice_id}' not found")
start_time = time.time()
# Generate audio using voice ID
sample_rate, audio_data = generate_tts_audio(
request.text,
request.voice_id,
request.exaggeration,
request.temperature,
request.seed,
request.cfg_weight
)
generation_time = time.time() - start_time
# Save audio file
audio_id = generate_id()
audio_path = os.path.join(AUDIO_DIR, f"{audio_id}.wav")
sf.write(audio_path, audio_data, sample_rate)
# Cache audio info
voice_name = voice_library[request.voice_id]["name"]
audio_cache[audio_id] = {
"path": audio_path,
"text": request.text,
"voice_id": request.voice_id,
"voice_name": voice_name,
"sample_rate": sample_rate,
"duration": len(audio_data) / sample_rate,
"generated_at": time.time(),
"generation_time": generation_time,
"real_chatterbox": CHATTERBOX_AVAILABLE
}
message = f"Speech synthesized successfully using voice '{voice_name}'"
if not CHATTERBOX_AVAILABLE:
message += " (using fallback - upload ChatterboxTTS for real synthesis)"
logger.info(f"β
Audio saved: {audio_id} ({generation_time:.2f}s) with voice '{voice_name}'")
return TTSResponse(
success=True,
audio_id=audio_id,
message=message,
sample_rate=sample_rate,
duration=len(audio_data) / sample_rate
)
except HTTPException:
raise
except Exception as e:
logger.error(f"β Synthesis failed: {e}")
raise HTTPException(status_code=500, detail=f"Synthesis failed: {str(e)}")
@app.get("/api/audio/{audio_id}")
async def get_audio(audio_id: str):
"""Download generated audio file"""
if audio_id not in audio_cache:
raise HTTPException(status_code=404, detail="Audio not found")
audio_info = audio_cache[audio_id]
audio_path = audio_info["path"]
if not os.path.exists(audio_path):
raise HTTPException(status_code=404, detail="Audio file not found on disk")
def iterfile():
with open(audio_path, "rb") as f:
yield from f
return StreamingResponse(
iterfile(),
media_type="audio/wav",
headers={
"Content-Disposition": f"attachment; filename=tts_{audio_id}.wav"
}
)
@app.get("/api/audio/{audio_id}/info")
async def get_audio_info(audio_id: str):
"""Get audio file information"""
if audio_id not in audio_cache:
raise HTTPException(status_code=404, detail="Audio not found")
return audio_cache[audio_id]
@app.get("/api/audio")
async def list_audio():
"""List all generated audio files"""
return {
"audio_files": [
{
"audio_id": audio_id,
"text": info["text"][:50] + "..." if len(info["text"]) > 50 else info["text"],
"voice_name": info.get("voice_name", "Unknown"),
"duration": info["duration"],
"generated_at": info["generated_at"],
"real_chatterbox": info.get("real_chatterbox", False)
}
for audio_id, info in audio_cache.items()
],
"total": len(audio_cache)
}
# Gradio interface
def create_gradio_interface():
"""Create Gradio interface with voice management"""
def get_voice_choices():
"""Get voice choices for dropdown"""
choices = []
for voice_id, voice_info in voice_library.items():
voice_type = "π§" if voice_info["type"] == "builtin" else "π"
choices.append((f"{voice_type} {voice_info['name']} - {voice_info['description']}", voice_id))
return choices
def refresh_voice_choices():
"""Refresh voice dropdown"""
return gr.update(choices=get_voice_choices())
def create_voice_ui(voice_name, voice_description, audio_file):
"""Create voice from UI"""
try:
if not voice_name.strip():
return "β Please enter a voice name", gr.update()
if audio_file is None:
return "β Please upload an audio file", gr.update()
voice_id, voice_entry = create_voice_from_audio(
audio_file,
voice_name.strip(),
voice_description.strip() or "Custom voice"
)
if voice_id:
updated_choices = get_voice_choices()
return (
f"β
Voice '{voice_name}' created successfully!\n"
f"π Voice ID: {voice_id}\n"
f"π Audio saved and ready to use\n"
f"π Available in voice selection dropdown",
gr.update(choices=updated_choices, value=voice_id)
)
else:
return "β Failed to create voice", gr.update()
except Exception as e:
logger.error(f"UI voice creation failed: {e}")
return f"β Voice creation failed: {str(e)}", gr.update()
def generate_speech_ui(text, voice_id, exag, temp, seed_val, cfg):
"""Generate speech from UI using voice ID"""
try:
if not text.strip():
return None, "β Please enter some text"
if len(text) > 300:
return None, "β Text too long (max 300 characters)"
if not voice_id or voice_id not in voice_library:
return None, "β Please select a valid voice"
start_time = time.time()
# Generate audio using voice ID
sample_rate, audio_data = generate_tts_audio(
text, voice_id, exag, temp, int(seed_val), cfg
)
generation_time = time.time() - start_time
duration = len(audio_data) / sample_rate
voice_name = voice_library[voice_id]["name"]
voice_type = voice_library[voice_id]["type"]
if CHATTERBOX_AVAILABLE:
status = f"""β
Real ChatterboxTTS synthesis completed!
π Voice: {voice_name} ({voice_type})
β±οΈ Generation time: {generation_time:.2f}s
π΅ Audio duration: {duration:.2f}s
π Sample rate: {sample_rate} Hz
π Audio samples: {len(audio_data):,}
"""
else:
status = f"""β οΈ Fallback audio generated (beep sound)
π¨ This is NOT real speech synthesis!
π Voice: {voice_name} ({voice_type})
π¦ Upload ChatterboxTTS package for real synthesis
β±οΈ Generation time: {generation_time:.2f}s
π΅ Audio duration: {duration:.2f}s
π‘ To fix: Upload your ChatterboxTTS files to this Space
"""
return (sample_rate, audio_data), status
except Exception as e:
logger.error(f"UI generation failed: {e}")
return None, f"β Generation failed: {str(e)}"
def delete_voice_ui(voice_id):
"""Delete voice from UI"""
try:
if not voice_id or voice_id not in voice_library:
return "β Please select a voice to delete", gr.update()
voice_info = voice_library[voice_id]
if voice_info.get("type") == "builtin":
return "β Cannot delete builtin voices", gr.update()
voice_name = voice_info["name"]
# Delete legacy audio file if it exists
if "audio_path" in voice_info and os.path.exists(voice_info["audio_path"]):
os.unlink(voice_info["audio_path"])
# Remove from library
del voice_library[voice_id]
save_voice_library()
updated_choices = get_voice_choices()
logger.info(f"β
UI: Deleted voice {voice_name} ({voice_id})")
return (
f"β
Voice '{voice_name}' deleted successfully",
gr.update(choices=updated_choices, value=updated_choices[0][1] if updated_choices else None)
)
except Exception as e:
logger.error(f"UI voice deletion failed: {e}")
return f"β Voice deletion failed: {str(e)}", gr.update()
with gr.Blocks(title="ChatterboxTTS Voice Manager", theme=gr.themes.Soft()) as demo:
# Status indicator at the top
if CHATTERBOX_AVAILABLE:
status_color = "green"
status_message = "β
Real ChatterboxTTS Loaded - Production Ready!"
else:
status_color = "orange"
status_message = "β οΈ Fallback Mode - Upload ChatterboxTTS Package for Real Synthesis"
gr.HTML(f"""
<div style="background-color: {status_color}; color: white; padding: 10px; border-radius: 5px; margin-bottom: 20px;">
<h3 style="margin: 0;">{status_message}</h3>
</div>
""")
gr.Markdown("""
# π΅ ChatterboxTTS Voice Manager
**Advanced text-to-speech with custom voice cloning and voice library management**
""")
with gr.Tabs():
# Text-to-Speech Tab
with gr.TabItem("π΅ Generate Speech"):
with gr.Row():
with gr.Column():
text_input = gr.Textbox(
value="Hello, this is ChatterboxTTS with custom voice cloning. I can speak in any voice you train me with!",
label="Text to synthesize (max 300 characters)",
max_lines=5,
placeholder="Enter your text here..."
)
voice_selector = gr.Dropdown(
label="π Select Voice (π§ = builtin, π = custom)",
choices=get_voice_choices(),
value=list(voice_library.keys())[0] if voice_library else None,
interactive=True
)
with gr.Row():
generate_btn = gr.Button("π΅ Generate Speech", variant="primary")
refresh_voices_btn = gr.Button("π Refresh Voices", size="sm")
with gr.Row():
exaggeration = gr.Slider(
0.25, 2,
step=0.05,
label="Exaggeration (Controls expressiveness - 0.5 = neutral)",
value=0.5
)
cfg_weight = gr.Slider(
0.2, 1,
step=0.05,
label="CFG Weight (Controls pace and clarity)",
value=0.5
)
with gr.Accordion("Advanced Settings", open=False):
temperature = gr.Slider(
0.05, 5,
step=0.05,
label="Temperature (Controls randomness)",
value=0.8
)
seed = gr.Number(
value=0,
label="Seed (0 = random, set to non-zero for reproducible results)"
)
with gr.Column():
audio_output = gr.Audio(label="π Generated Speech")
status_text = gr.Textbox(
label="π Generation Status",
interactive=False,
lines=8,
placeholder="Select a voice and click 'Generate Speech' to start..."
)
# Voice Management Tab
with gr.TabItem("π Voice Library"):
with gr.Row():
with gr.Column():
gr.Markdown("### π Available Voices")
voices_display = gr.HTML(
value=f"""
<div style="max-height: 300px; overflow-y: auto; border: 1px solid #ddd; padding: 10px; border-radius: 5px;">
{''.join([f"<p><strong>{voice_info['name']}</strong> ({voice_info['type']})<br><small>{voice_info['description']}</small></p>" for voice_info in voice_library.values()])}
</div>
"""
)
gr.Markdown("### ποΈ Delete Voice")
delete_voice_selector = gr.Dropdown(
label="Select voice to delete",
choices=[(f"{info['name']} ({info['type']})", vid) for vid, info in voice_library.items() if info['type'] == 'custom'],
value=None
)
delete_voice_btn = gr.Button("ποΈ Delete Selected Voice", variant="stop")
delete_status = gr.Textbox(label="Delete Status", interactive=False)
with gr.Column():
gr.Markdown("### β Create New Voice")
new_voice_name = gr.Textbox(
label="Voice Name",
placeholder="e.g., 'John's Voice', 'Narrator Voice'",
value=""
)
new_voice_description = gr.Textbox(
label="Voice Description",
placeholder="e.g., 'Professional male voice', 'Warm female narrator'",
value=""
)
new_voice_audio = gr.Audio(
label="Upload Voice Sample (5-30 seconds of clear speech)",
type="numpy"
)
create_voice_btn = gr.Button("π― Create Voice", variant="primary")
create_status = gr.Textbox(
label="π Creation Status",
interactive=False,
lines=6
)
# Voice Library Info Tab
with gr.TabItem("π Voice Guide"):
gr.Markdown(f"""
## π Voice Library Management
### π Current Library Status
- **Total Voices**: {len(voice_library)}
- **Builtin Voices**: {len([v for v in voice_library.values() if v['type'] == 'builtin'])}
- **Custom Voices**: {len([v for v in voice_library.values() if v['type'] == 'custom'])}
### π§ Builtin Voices
These are pre-configured voices that come with the system:
{chr(10).join([f"- **{voice_info['name']}**: {voice_info['description']}" for voice_info in voice_library.values() if voice_info['type'] == 'builtin'])}
### π― Creating Custom Voices
#### π Best Practices:
1. **Audio Quality**: Use clear, noise-free recordings
2. **Duration**: 5-30 seconds of natural speech
3. **Content**: Normal conversational speech works best
4. **Format**: WAV, MP3, or FLAC files supported
5. **Voice Consistency**: Use the same speaker throughout
#### π€ Recording Tips:
- Record in a quiet environment
- Speak naturally and clearly
- Avoid background noise
- Use a decent microphone if possible
- Read a paragraph of normal text
#### π Voice Management:
- **Create**: Upload audio + provide name and description
- **Use**: Select from dropdown in speech generation
- **Delete**: Remove custom voices you no longer need
- **Persistent**: Custom voices are saved permanently
### π Usage Workflow:
1. **Upload Voice Sample** β Create custom voice
2. **Select Voice** β Choose from library
3. **Generate Speech** β Use selected voice for TTS
4. **Manage Library** β Add, delete, organize voices
### π API Integration:
```python
# List voices
GET /api/voices
# Create voice
POST /api/voices/create
# Generate speech with voice
POST /api/tts/synthesize
{{
"text": "Hello world",
"voice_id": "your_voice_id"
}}
# Delete voice
DELETE /api/voices/voice_id
```
### π‘ Pro Tips:
- **Voice Naming**: Use descriptive names like "John_Professional" or "Sarah_Narrator"
- **Voice Testing**: Generate short test phrases after creating voices
- **Voice Backup**: Custom voices are saved to disk automatically
- **Voice Sharing**: Voice IDs can be shared via API
""")
# Event handlers
generate_btn.click(
fn=generate_speech_ui,
inputs=[text_input, voice_selector, exaggeration, temperature, seed, cfg_weight],
outputs=[audio_output, status_text]
)
refresh_voices_btn.click(
fn=refresh_voice_choices,
outputs=[voice_selector]
)
create_voice_btn.click(
fn=create_voice_ui,
inputs=[new_voice_name, new_voice_description, new_voice_audio],
outputs=[create_status, voice_selector]
)
delete_voice_btn.click(
fn=delete_voice_ui,
inputs=[delete_voice_selector],
outputs=[delete_status, voice_selector]
)
# System info with voice library status
model_status = "β
Real ChatterboxTTS" if CHATTERBOX_AVAILABLE else "β οΈ Fallback Model (Beep Sounds)"
chatterbox_status = "Available" if CHATTERBOX_AVAILABLE else "Missing - Upload Package"
gr.Markdown(f"""
### π System Status
- **Model**: {model_status}
- **Device**: {DEVICE}
- **ChatterboxTTS**: {chatterbox_status}
- **Voice Library**: {len(voice_library)} voices loaded
- **Storage**: {"β
Persistent (/data)" if VOICES_DIR.startswith("/data") else "β οΈ Temporary"}
- **Generated Files**: {len(audio_cache)}
{'''### π Production Ready!
Your ChatterboxTTS model is loaded with persistent voice management.''' if CHATTERBOX_AVAILABLE else '''### β οΈ Action Required
**You're hearing beep sounds because ChatterboxTTS isn't loaded.**
Voice management is working with persistent storage, but you need ChatterboxTTS for real synthesis.'''}
""")
return demo
# Main execution
if __name__ == "__main__":
logger.info("π Starting ChatterboxTTS Voice Management Service...")
# Model status
if CHATTERBOX_AVAILABLE and MODEL:
model_status = "β
Real ChatterboxTTS Loaded"
elif MODEL:
model_status = "β οΈ Fallback Model (Upload ChatterboxTTS package for real synthesis)"
else:
model_status = "β No Model Loaded"
logger.info(f"Model Status: {model_status}")
logger.info(f"Device: {DEVICE}")
logger.info(f"ChatterboxTTS Available: {CHATTERBOX_AVAILABLE}")
logger.info(f"Voice Library: {len(voice_library)} voices loaded")
logger.info(f"Custom Voices: {len([v for v in voice_library.values() if v['type'] == 'custom'])}")
if not CHATTERBOX_AVAILABLE:
logger.warning("π¨ IMPORTANT: Upload your ChatterboxTTS package to enable real synthesis!")
# Always start FastAPI in background (both local and HF Spaces)
import uvicorn
import threading
def run_fastapi():
uvicorn.run(app, host="0.0.0.0", port=8000, log_level="info")
# Start FastAPI in background thread
api_thread = threading.Thread(target=run_fastapi, daemon=True)
api_thread.start()
logger.info("π FastAPI Server: Starting on port 8000")
logger.info("π API Documentation will be available")
logger.info("π API Endpoints:")
logger.info(" - GET /api/voices")
logger.info(" - POST /api/voices/create")
logger.info(" - DELETE /api/voices/{voice_id}")
logger.info(" - POST /api/tts/synthesize")
logger.info(" - GET /api/audio/{audio_id}")
if os.getenv("SPACE_ID"):
# Running in Hugging Face Spaces
logger.info("π Running in Hugging Face Spaces")
logger.info("π API will be available at: https://[your-space-name].hf.space:8000")
logger.info("π API Docs will be at: https://[your-space-name].hf.space:8000/docs")
demo = create_gradio_interface()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True
)
else:
# Local development
logger.info("π» Running in Local Development")
logger.info("π FastAPI: http://localhost:8000")
logger.info("π API Docs: http://localhost:8000/docs")
logger.info("π΅ Gradio UI: http://localhost:7861")
# Start Gradio
demo = create_gradio_interface()
demo.launch(
share=True,
server_name="0.0.0.0",
server_port=7861
) |