File size: 25,199 Bytes
13f4b4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e56482
13f4b4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5410f76
13f4b4c
3e56482
13f4b4c
3e56482
 
 
 
 
 
 
 
13f4b4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e56482
13f4b4c
3e56482
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13f4b4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e56482
13f4b4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
import gradio as gr
import torch
import datetime
import pytz
import uuid
import re
import json
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
from google.oauth2 import service_account
from googleapiclient.discovery import build
import os
import gc
import logging

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Log startup
logger.info("Starting appointment booking application...")

# Set up timezone
IST = pytz.timezone('Asia/Kolkata')

# ===== CONFIGURATION =====

# Model ID on Hugging Face
MODEL_ID = "meta-llama/Meta-Llama-3.1-8B-Instruct"

# Google Calendar API Configuration
SCOPES = ['https://www.googleapis.com/auth/calendar']
SERVICE_ACCOUNT_FILE = 'service-account-key.json'
CALENDAR_ID = '26f5856049fab3d6648a2f1dea57c70370de6bc1629a5182be1511b0e75d11d3@group.calendar.google.com'  # Update with your calendar ID if not using primary

# Local appointments database (for backup)
appointments_db = {}

# ===== GOOGLE CALENDAR FUNCTIONS =====

def get_calendar_service():
    """Get Google Calendar service"""
    try:
        # Check if Google credentials are stored in env variable
        google_credentials = os.environ.get('GOOGLE_CREDENTIALS')
        if google_credentials:
            logger.info("Using Google credentials from environment variable")
            # Write the credentials to a temporary file
            with open('temp_credentials.json', 'w') as f:
                f.write(google_credentials)
            temp_file_path = 'temp_credentials.json'
            credentials = service_account.Credentials.from_service_account_file(
                temp_file_path, scopes=SCOPES)
        elif os.path.exists(SERVICE_ACCOUNT_FILE):
            logger.info(f"Using Google credentials from file: {SERVICE_ACCOUNT_FILE}")
            # Use the file on disk
            credentials = service_account.Credentials.from_service_account_file(
                SERVICE_ACCOUNT_FILE, scopes=SCOPES)
        else:
            logger.warning("No Google Calendar credentials found")
            return None

        service = build('calendar', 'v3', credentials=credentials)
        return service
    except Exception as e:
        logger.error(f"Error getting calendar service: {e}")
        return None

def add_to_google_calendar(appointment_details):
    """Add an appointment to Google Calendar"""
    try:
        service = get_calendar_service()
        if not service:
            return None

        # Format start and end time
        date_str = appointment_details["date"]
        time_str = appointment_details["time"]
        
        # Parse date and time
        date_parts = date_str.split('-')
        year, month, day = int(date_parts[0]), int(date_parts[1]), int(date_parts[2])

        time_parts = time_str.split(' ')
        time_val = time_parts[0]
        meridian = time_parts[1] if len(time_parts) > 1 else 'AM'

        hours, minutes = map(int, time_val.split(':'))

        if meridian.upper() == 'PM' and hours != 12:
            hours += 12
        if meridian.upper() == 'AM' and hours == 12:
            hours = 0

        # Create datetime objects
        start_time = datetime.datetime(year, month, day, hours, minutes, 0, tzinfo=IST)
        end_time = start_time + datetime.timedelta(hours=1)  # Default 1 hour appointment

        # Create event
        event = {
            'summary': f"Appointment with {appointment_details['name']}",
            'location': 'Office',
            'description': 'Appointment booked via AI Assistant',
            'start': {
                'dateTime': start_time.isoformat(),
                'timeZone': 'Asia/Kolkata',
            },
            'end': {
                'dateTime': end_time.isoformat(),
                'timeZone': 'Asia/Kolkata',
            },
            'reminders': {
                'useDefault': False,
                'overrides': [
                    {'method': 'email', 'minutes': 24 * 60},
                    {'method': 'popup', 'minutes': 10},
                ],
            },
        }

        # Add unique ID to track for cancellation
        appointment_id = appointment_details.get('appointment_id', str(uuid.uuid4()))
        event['extendedProperties'] = {
            'private': {
                'appointment_id': appointment_id
            }
        }

        # Insert event
        created_event = service.events().insert(calendarId=CALENDAR_ID, body=event).execute()
        return created_event['id']

    except Exception as e:
        logger.error(f"Error adding to Google Calendar: {e}")
        return None

# ===== FUNCTION DEFINITIONS =====

function_definitions = [
  {
    "name": "book_appointment",
    "description": "Book an appointment",
    "parameters": {
      "type": "object",
      "properties": {
        "name": {
          "type": "string",
          "description": "The name of the person"
        },
        "date": {
          "type": "string",
          "description": "The date in YYYY-MM-DD format"
        },
        "time": {
          "type": "string",
          "description": "The time of the appointment (e.g., '10:00 AM')"
        }
      },
      "required": ["name", "date", "time"]
    }
  }
]

# ===== FUNCTION IMPLEMENTATIONS =====

def book_appointment(appointment_details):
    """Book an appointment with just name, date and time"""
    try:
        # Generate a unique appointment ID
        appointment_id = str(uuid.uuid4())[:8]  # Shorter ID for simplicity
        
        # Add appointment ID to details
        appointment_details['appointment_id'] = appointment_id
        
        # Store in local database
        appointments_db[appointment_id] = appointment_details
        
        # Add to Google Calendar
        calendar_event_id = add_to_google_calendar(appointment_details)
        
        if calendar_event_id:
            # Store the calendar event ID
            appointments_db[appointment_id]['calendar_event_id'] = calendar_event_id
            
            return {
                "success": True,
                "appointment_id": appointment_id,
                "message": "Appointment successfully booked and added to calendar",
                "details": {
                    "name": appointment_details["name"],
                    "date": appointment_details["date"],
                    "time": appointment_details["time"],
                    "location": "Office"
                }
            }
        else:
            return {
                "success": True,
                "appointment_id": appointment_id,
                "message": "Appointment booked but failed to add to calendar (offline mode)",
                "details": {
                    "name": appointment_details["name"],
                    "date": appointment_details["date"],
                    "time": appointment_details["time"],
                    "location": "Office"
                }
            }
    except Exception as e:
        logger.error(f"Error in book_appointment: {e}")
        return {
            "success": False,
            "message": f"Failed to book appointment: {str(e)}"
        }

# ===== MODEL MANAGEMENT =====

# Global model and tokenizer - SINGLETON PATTERN
model = None
tokenizer = None

def free_memory():
    """Free memory by clearing cache and running garbage collection"""
    gc.collect()
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
        logger.info(f"GPU memory allocated: {torch.cuda.memory_allocated() / 1024**3:.2f} GB")
        logger.info(f"GPU memory reserved: {torch.cuda.memory_reserved() / 1024**3:.2f} GB")

def load_llama_model():
    """Load the Llama 3.1 model and tokenizer using singleton pattern"""
    global model, tokenizer

    # If model already loaded, return the existing instances
    if model is not None and tokenizer is not None:
        return True

    logger.info("Loading Llama 3.1 model and tokenizer...")
    free_memory()

    try:
        # Set up quantization config for better memory efficiency
        quantization_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_compute_dtype=torch.float16,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_use_double_quant=True
        )

        # Load tokenizer
        tokenizer_local = AutoTokenizer.from_pretrained(MODEL_ID)
        logger.info("Tokenizer loaded successfully")

        # Load model with optimized settings
        model_local = AutoModelForCausalLM.from_pretrained(
            MODEL_ID,
            quantization_config=quantization_config,
            device_map="auto",
            torch_dtype=torch.float16,
            low_cpu_mem_usage=True
        )
        logger.info("Model loaded successfully")

        # Store in global variables
        model = model_local
        tokenizer = tokenizer_local

        free_memory()
        logger.info("Model and tokenizer initialization complete")
        return True

    except Exception as e:
        logger.error(f"Error loading model: {e}")
        return False

# ===== CHAT PROCESSING =====

def format_prompt_with_functions(messages, system_prompt):
    """Format the prompt for Llama 3.1 with function definitions"""
    # Add function definitions to system prompt
    full_system_prompt = system_prompt + "\n\n"
    full_system_prompt += "You have access to the following functions that you MUST use for specific user queries:\n"

    for func in function_definitions:
        full_system_prompt += f"- {func['name']}: {func['description']}\n"
        full_system_prompt += "  Parameters:\n"
        for param_name, param_info in func['parameters']['properties'].items():
            required = "required" if param_name in func['parameters'].get('required', []) else "optional"
            full_system_prompt += f"    - {param_name} ({required}): {param_info.get('description', '')}\n"

    full_system_prompt += "\nIMPORTANT: When a user asks to book an appointment, you MUST respond using the following JSON format:\n"
    full_system_prompt += '```json\n{"function_call": {"name": "function_name", "arguments": {"arg1": "value1", "arg2": "value2"}}}\n```\n'
    full_system_prompt += "You MUST collect all required information first: name, date, and time."
    full_system_prompt += "\n\nFor non-function-calling queries, respond in a conversational manner."

    # Format conversation history
    formatted_messages = [
        {"role": "system", "content": full_system_prompt}
    ]

    # Add conversation history
    for message in messages:
        if message["role"] == "function":
            # Convert function results to assistant format for Llama 3.1
            formatted_messages.append({
                "role": "assistant",
                "content": f"I'll process the function result: {message['content']}"
            })
        else:
            formatted_messages.append(message)

    return formatted_messages

def extract_function_call(response_text):
    """Extract function call from model response"""
    # Look for JSON block in the response
    json_pattern = r'```json\s*(.*?)\s*```'
    json_matches = re.findall(json_pattern, response_text, re.DOTALL)

    if not json_matches:
        # Try alternative pattern without markdown
        json_pattern = r'({.*"function_call".*})'
        json_matches = re.findall(json_pattern, response_text, re.DOTALL)

    if json_matches:
        try:
            for json_str in json_matches:
                parsed_json = json.loads(json_str.strip())
                if "function_call" in parsed_json:
                    function_call = parsed_json["function_call"]
                    return {
                        "id": str(uuid.uuid4()),
                        "name": function_call["name"],
                        "arguments": function_call["arguments"]
                    }
        except json.JSONDecodeError:
            logger.error(f"Failed to parse JSON: {json_matches[0]}")

    return None

def safe_generate(inputs, max_new_tokens=512):
    """Safely generate text with error handling and memory management"""
    global model, tokenizer

    try:
        free_memory()

        # Generate with appropriate settings
        outputs = model.generate(
            inputs,
            max_new_tokens=max_new_tokens,
            temperature=0.7,
            top_p=0.9,
            do_sample=True,
            pad_token_id=tokenizer.eos_token_id
        )

        response_text = tokenizer.decode(outputs[0][inputs.shape[1]:], skip_special_tokens=True)
        free_memory()
        return response_text
    except Exception as e:
        logger.error(f"Error in generation: {e}")
        free_memory()
        return f"Error generating response: {str(e)}"

def process_chat(message, chat_history):
    """Process a chat message, calling functions when necessary"""
    global model, tokenizer

    if model is None or tokenizer is None:
        error_msg = "Model not loaded properly. Please click 'Reload Model' and try again."
        new_history = chat_history + [(message, error_msg)]
        return new_history, new_history

    try:
        # Create system prompt
        system_prompt = """You are a friendly appointment booking assistant. You help users book appointments by collecting their name, preferred date, and time.

CRITICALLY IMPORTANT: NEVER make up or hallucinate appointment details. If the user has not explicitly provided name, date, or time, you MUST ask for these details before calling any function. 

Follow these strict rules for appointment booking:
1. When a user asks to book an appointment, first check if they've provided name, date, and time.
2. If ANY of these details are missing, do NOT call the book_appointment function. Instead, politely ask the user for the missing information.
3. ONLY call the book_appointment function when you have collected ALL required information directly from the user.
4. NEVER invent, assume, or hallucinate ANY details - even common names like "John Doe" or dates like "tomorrow".
5. Use YYYY-MM-DD format for dates (e.g., 2025-05-15) and clear time format with AM/PM (e.g., 10:00 AM).

If the user says something like "book an appointment" without providing details, your ONLY correct response is to ask for their name, preferred date, and time - NOT to make up this information or call the function."""

        # Convert Gradio chat history to message format
        messages = []

        # Limit history to last 3 exchanges to save memory
        limited_chat_history = chat_history[-3:] if len(chat_history) > 3 else chat_history

        for user_msg, bot_msg in limited_chat_history:
            messages.append({"role": "user", "content": user_msg})
            messages.append({"role": "assistant", "content": bot_msg})

        # Add current message
        messages.append({"role": "user", "content": message})

        # Format messages with function calling info
        formatted_messages = format_prompt_with_functions(messages, system_prompt)

        # Generate model response with error handling
        try:
            inputs = tokenizer.apply_chat_template(
                formatted_messages,
                tokenize=True,
                add_generation_prompt=True,
                return_tensors="pt"
            ).to(model.device)

            # First generation
            response_text = safe_generate(inputs, max_new_tokens=512)
            logger.info(f"Model response: {response_text[:100]}...")

            # Check if response contains a function call
            function_call = extract_function_call(response_text)
            
            # Additional validation to prevent hallucination
            if function_call and function_call["name"] == "book_appointment":
                # Verify all required fields are present
                args = function_call["arguments"]
                required_fields = ["name", "date", "time"]
                missing_fields = [field for field in required_fields if field not in args or not args[field]]
                
                # Check if any date/time looks made up (basic validation)
                looks_made_up = False
                
                # Check for generic placeholder names
                if "name" in args and args["name"].lower() in ["john", "john doe", "jane", "jane doe", "test", "user"]:
                    logger.warning(f"Detected likely hallucinated name: {args['name']}")
                    looks_made_up = True
                
                # Don't proceed if missing fields or suspicious data
                if missing_fields or looks_made_up:
                    logger.warning(f"Detected hallucination attempt. Missing fields: {missing_fields}, Suspicious data: {looks_made_up}")
                    # Skip function calling and let the model ask for the missing information
                    new_chat_history = chat_history + [(message, response_text)]
                    return new_chat_history, new_chat_history
                # Execute the booking function
                function_result = book_appointment(function_call["arguments"])
                logger.info(f"Function result: {json.dumps(function_result)[:200]}...")

                # Add the function result to messages
                messages.append({
                    "role": "assistant",
                    "content": response_text,
                })

                messages.append({
                    "role": "function",
                    "name": "book_appointment",
                    "content": json.dumps(function_result)
                })

                # Format messages for second call
                formatted_messages = format_prompt_with_functions(messages, system_prompt)

                # Generate second response
                inputs = tokenizer.apply_chat_template(
                    formatted_messages,
                    tokenize=True,
                    add_generation_prompt=True,
                    return_tensors="pt"
                ).to(model.device)

                second_response = safe_generate(inputs, max_new_tokens=512)
                logger.info(f"Second model response: {second_response[:100]}...")

                # Update chat history
                new_chat_history = chat_history + [(message, second_response)]
                return new_chat_history, new_chat_history
            else:
                # No function call, just return the response
                new_chat_history = chat_history + [(message, response_text)]
                return new_chat_history, new_chat_history
                
        except Exception as e:
            logger.error(f"Error in generation: {e}")
            error_msg = f"Sorry, I couldn't generate a response. Please try a simpler question or try again later."
            new_chat_history = chat_history + [(message, error_msg)]
            return new_chat_history, new_chat_history
    except Exception as e:
        logger.error(f"Error in process_chat: {e}")
        error_msg = f"Sorry, I encountered an error. Please try again."
        new_chat_history = chat_history + [(message, error_msg)]
        return new_chat_history, new_chat_history

# ===== GRADIO INTERFACE =====

def create_gradio_interface():
    """Create the Gradio interface for the chatbot"""
    logger.info("Creating Gradio interface...")

    with gr.Blocks(css="""
        .gradio-container {max-width: 800px !important}
        .chat-window {height: 600px !important; overflow-y: auto}
    """) as demo:
        gr.Markdown("# Simple Appointment Booking Assistant")
        gr.Markdown("### Tell me your name, date and time to book an appointment")

        # Model status indicator
        with gr.Row():
            model_status = gr.Textbox(
                label="Model Status",
                value="Loading model...",
                interactive=False
            )

        # Calendar integration status
        with gr.Row():
            calendar_status = gr.Textbox(
                label="Calendar Integration Status",
                value="Checking Google Calendar integration...",
                interactive=False
            )

        # Function to check Google Calendar connectivity
        def check_calendar_integration():
            try:
                service = get_calendar_service()
                if service:
                    return "Google Calendar integration is active. Appointments will be saved to calendar."
                else:
                    return "Google Calendar integration is not available. Appointments will only be stored in memory."
            except Exception as e:
                logger.error(f"Error checking calendar integration: {str(e)}")
                return f"Error checking calendar integration: {str(e)}"

        # Chatbot interface
        chatbot = gr.Chatbot(
            [],
            elem_id="chatbot",
            label="Chat with Appointment Assistant",
            height=500
        )

        with gr.Row():
            msg = gr.Textbox(
                show_label=False,
                placeholder="Type your message here...",
                container=False
            )
            submit = gr.Button("Send")

        with gr.Row():
            clear = gr.Button("Clear Conversation")
            reload_model = gr.Button("Reload Model")

        # Provide instructions
        with gr.Accordion("Instructions", open=False):
            gr.Markdown("""
            ## How to use this appointment booking assistant:

            Simply tell the assistant you want to book an appointment and provide:
            1. Your name
            2. The date you want (in YYYY-MM-DD format)
            3. The time you want (like "10:00 AM")

            ### Example messages:
            - "I'd like to book an appointment"
            - "Book an appointment for John Smith on 2025-05-20 at 2:30 PM"
            - "Can I schedule a meeting tomorrow at 10 AM?"
            """)

        chat_history = gr.State([])

        def initialize_model():
            """Initialize the model on app startup"""
            success = load_llama_model()
            status = "Model loaded successfully!" if success else "Error loading model. Try clicking 'Reload Model'."
            cal_status = check_calendar_integration()
            return status, [], cal_status

        def reload_model_click():
            """Force reload the model and free memory"""
            global model, tokenizer
            # Clear global variables
            model = None
            tokenizer = None
            # Free memory
            free_memory()
            # Reload model
            success = load_llama_model()
            status = "Model reloaded successfully!" if success else "Error reloading model. Check logs for details."
            cal_status = check_calendar_integration()
            return status, [], cal_status

        # Set up event handlers
        submit.click(
            process_chat,
            inputs=[msg, chat_history],
            outputs=[chatbot, chat_history]
        ).then(
            lambda: "",
            None,
            msg
        )

        msg.submit(
            process_chat,
            inputs=[msg, chat_history],
            outputs=[chatbot, chat_history]
        ).then(
            lambda: "",
            None,
            msg
        )

        clear.click(
            lambda: [],
            inputs=None,
            outputs=[chat_history]
        ).then(
            lambda: [],
            inputs=None,
            outputs=[chatbot]
        )

        reload_model.click(
            reload_model_click,
            inputs=None,
            outputs=[model_status, chat_history, calendar_status]
        ).then(
            lambda: [],
            inputs=None,
            outputs=[chatbot]
        )

        # Initial welcome message
        demo.load(
            initialize_model,
            inputs=None,
            outputs=[model_status, chat_history, calendar_status]
        ).then(
            lambda: [("", "Hello! I'm your appointment booking assistant. I can help you schedule an appointment. Please provide your name, preferred date (YYYY-MM-DD format), and time (like 10:00 AM) when you want to book an appointment.")],
            inputs=None,
            outputs=[chatbot]
        )

    return demo

# ===== MAIN EXECUTION =====

if __name__ == "__main__":
    logger.info("===== Simple Appointment Booking Assistant =====")
    logger.info("Using Llama 3.1-8B-Instruct")

    # Set PyTorch environment variables for memory efficiency
    os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128,garbage_collection_threshold:0.8"

    try:
        # Create and launch the Gradio interface
        logger.info("Creating demo...")
        demo = create_gradio_interface()
        logger.info("Demo created, launching...")
        demo.launch(share=False, debug=True)
        logger.info("Gradio interface launched successfully")
    except Exception as e:
        logger.error(f"Error launching Gradio interface: {e}")
        import traceback
        logger.error(traceback.format_exc())