Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,312 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import re
|
4 |
+
import datetime
|
5 |
+
from google.oauth2 import service_account
|
6 |
+
from googleapiclient.discovery import build
|
7 |
+
import gradio as gr
|
8 |
+
import torch
|
9 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
10 |
+
|
11 |
+
# Google Calendar API setup with Service Account
|
12 |
+
SCOPES = ['https://www.googleapis.com/auth/calendar']
|
13 |
+
# Calendar ID - use your calendar ID here
|
14 |
+
CALENDAR_ID = os.getenv('CALENDAR_ID', '26f5856049fab3d6648a2f1dea57c70370de6bc1629a5182be1511b0e75d11d3@group.calendar.google.com')
|
15 |
+
# Path to your service account key file
|
16 |
+
SERVICE_ACCOUNT_FILE = os.getenv('SERVICE_ACCOUNT_FILE', 'service-account-key.json')
|
17 |
+
|
18 |
+
# Load Llama 3.1 model
|
19 |
+
MODEL_ID = "meta-llama/Llama-3.1-8B-Instruct"
|
20 |
+
|
21 |
+
def get_calendar_service():
|
22 |
+
"""Set up Google Calendar service using service account"""
|
23 |
+
# Load service account info from environment or file
|
24 |
+
if os.getenv('SERVICE_ACCOUNT_INFO'):
|
25 |
+
# For Spaces deployment, load from environment variable
|
26 |
+
service_account_info = json.loads(os.getenv('SERVICE_ACCOUNT_INFO'))
|
27 |
+
credentials = service_account.Credentials.from_service_account_info(
|
28 |
+
service_account_info, scopes=SCOPES)
|
29 |
+
else:
|
30 |
+
# For local development, load from file
|
31 |
+
credentials = service_account.Credentials.from_service_account_file(
|
32 |
+
SERVICE_ACCOUNT_FILE, scopes=SCOPES)
|
33 |
+
|
34 |
+
service = build('calendar', 'v3', credentials=credentials)
|
35 |
+
return service
|
36 |
+
|
37 |
+
def format_time(time_str):
|
38 |
+
"""Format time input to ensure 24-hour format"""
|
39 |
+
# Handle AM/PM format
|
40 |
+
time_str = time_str.strip().upper()
|
41 |
+
is_pm = 'PM' in time_str
|
42 |
+
|
43 |
+
# Remove AM/PM
|
44 |
+
time_str = time_str.replace('AM', '').replace('PM', '').strip()
|
45 |
+
|
46 |
+
# Parse hours and minutes
|
47 |
+
if ':' in time_str:
|
48 |
+
parts = time_str.split(':')
|
49 |
+
hours = int(parts[0])
|
50 |
+
minutes = int(parts[1]) if len(parts) > 1 else 0
|
51 |
+
else:
|
52 |
+
hours = int(time_str)
|
53 |
+
minutes = 0
|
54 |
+
|
55 |
+
# Convert to 24-hour format if needed
|
56 |
+
if is_pm and hours < 12:
|
57 |
+
hours += 12
|
58 |
+
elif not is_pm and hours == 12:
|
59 |
+
hours = 0
|
60 |
+
|
61 |
+
# Return formatted time
|
62 |
+
return f"{hours:02d}:{minutes:02d}"
|
63 |
+
|
64 |
+
def add_event_to_calendar(name, date, time_str, duration_minutes=60):
|
65 |
+
"""Add an event to Google Calendar using Indian time zone"""
|
66 |
+
service = get_calendar_service()
|
67 |
+
|
68 |
+
# Format time properly
|
69 |
+
formatted_time = format_time(time_str)
|
70 |
+
print(f"Input time: {time_str}, Formatted time: {formatted_time}")
|
71 |
+
|
72 |
+
# For debugging - show the date and time being used
|
73 |
+
print(f"Using date: {date}, time: {formatted_time}")
|
74 |
+
|
75 |
+
# Create event
|
76 |
+
event = {
|
77 |
+
'summary': f"Appointment with {name}",
|
78 |
+
'description': f"Meeting with {name}",
|
79 |
+
'start': {
|
80 |
+
'dateTime': f"{date}T{formatted_time}:00",
|
81 |
+
'timeZone': 'Asia/Kolkata', # Indian Standard Time
|
82 |
+
},
|
83 |
+
'end': {
|
84 |
+
'dateTime': f"{date}T{formatted_time}:00", # Will add duration below
|
85 |
+
'timeZone': 'Asia/Kolkata', # Indian Standard Time
|
86 |
+
},
|
87 |
+
}
|
88 |
+
|
89 |
+
# Calculate end time properly in the same time zone
|
90 |
+
start_dt = datetime.datetime.fromisoformat(f"{date}T{formatted_time}:00")
|
91 |
+
end_dt = start_dt + datetime.timedelta(minutes=duration_minutes)
|
92 |
+
event['end']['dateTime'] = end_dt.isoformat()
|
93 |
+
|
94 |
+
print(f"Event start: {event['start']['dateTime']} {event['start']['timeZone']}")
|
95 |
+
print(f"Event end: {event['end']['dateTime']} {event['end']['timeZone']}")
|
96 |
+
|
97 |
+
try:
|
98 |
+
# Add to calendar with detailed error handling
|
99 |
+
event = service.events().insert(calendarId=CALENDAR_ID, body=event).execute()
|
100 |
+
print(f"Event created successfully: {event.get('htmlLink')}")
|
101 |
+
# Return True instead of the link to indicate success
|
102 |
+
return True
|
103 |
+
except Exception as e:
|
104 |
+
print(f"Error creating event: {str(e)}")
|
105 |
+
print(f"Calendar ID: {CALENDAR_ID}")
|
106 |
+
print(f"Event details: {json.dumps(event, indent=2)}")
|
107 |
+
raise
|
108 |
+
|
109 |
+
# Load model on startup to avoid loading it for each request
|
110 |
+
@gr.utils.memoize(utils=["torch"])
|
111 |
+
def load_llama_model():
|
112 |
+
"""Load the Llama 3.1 model"""
|
113 |
+
print("Loading Llama 3.1 model...")
|
114 |
+
|
115 |
+
# Spaces will handle the quantization, so we use default loading
|
116 |
+
# or you can adjust quantization based on available resources
|
117 |
+
model = AutoModelForCausalLM.from_pretrained(
|
118 |
+
MODEL_ID,
|
119 |
+
torch_dtype=torch.bfloat16,
|
120 |
+
device_map="auto",
|
121 |
+
low_cpu_mem_usage=True,
|
122 |
+
use_cache=True
|
123 |
+
)
|
124 |
+
|
125 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
126 |
+
|
127 |
+
return model, tokenizer
|
128 |
+
|
129 |
+
def extract_function_call(text):
|
130 |
+
"""Extract function call parameters from Llama's response text"""
|
131 |
+
# Look for JSON-like structure in the response
|
132 |
+
json_pattern = r'```json\s*({.*?})\s*```'
|
133 |
+
matches = re.findall(json_pattern, text, re.DOTALL)
|
134 |
+
|
135 |
+
if matches:
|
136 |
+
try:
|
137 |
+
return json.loads(matches[0])
|
138 |
+
except json.JSONDecodeError:
|
139 |
+
pass
|
140 |
+
|
141 |
+
# Try to find a pattern like {"name": "John", "date": "2025-05-10", "time": "14:30"}
|
142 |
+
json_pattern = r'{.*?"name".*?:.*?"(.*?)".*?"date".*?:.*?"(.*?)".*?"time".*?:.*?"(.*?)".*?}'
|
143 |
+
matches = re.findall(json_pattern, text, re.DOTALL)
|
144 |
+
|
145 |
+
if matches and len(matches[0]) == 3:
|
146 |
+
name, date, time = matches[0]
|
147 |
+
return {"name": name, "date": date, "time": time}
|
148 |
+
|
149 |
+
# If no JSON structure is found, try to extract individual fields
|
150 |
+
name_match = re.search(r'name["\s:]+([^",]+)', text, re.IGNORECASE)
|
151 |
+
date_match = re.search(r'date["\s:]+([^",]+)', text, re.IGNORECASE)
|
152 |
+
time_match = re.search(r'time["\s:]+([^",]+)', text, re.IGNORECASE)
|
153 |
+
|
154 |
+
result = {}
|
155 |
+
if name_match:
|
156 |
+
result["name"] = name_match.group(1).strip()
|
157 |
+
if date_match:
|
158 |
+
result["date"] = date_match.group(1).strip()
|
159 |
+
if time_match:
|
160 |
+
result["time"] = time_match.group(1).strip()
|
161 |
+
|
162 |
+
return result if result else None
|
163 |
+
|
164 |
+
def process_with_llama(user_input, conversation_history, llm_pipeline):
|
165 |
+
"""Process user input with Llama 3.1 model, handling function calling"""
|
166 |
+
try:
|
167 |
+
# Build conversation context with function calling instructions
|
168 |
+
function_description = """
|
169 |
+
You have access to the following function:
|
170 |
+
|
171 |
+
book_appointment
|
172 |
+
Description: Book an appointment in Google Calendar
|
173 |
+
Parameters:
|
174 |
+
- name: string, Name of the person for the appointment
|
175 |
+
- date: string, Date of appointment in YYYY-MM-DD format
|
176 |
+
- time: string, Time of appointment (e.g., '2:30 PM', '14:30')
|
177 |
+
|
178 |
+
When you need to book an appointment, output the function call in JSON format like this:
|
179 |
+
```json
|
180 |
+
{"name": "John Doe", "date": "2025-05-10", "time": "14:30"}
|
181 |
+
```
|
182 |
+
"""
|
183 |
+
|
184 |
+
# Create a prompt that includes conversation history and function description
|
185 |
+
prompt = "You are an appointment booking assistant for Indian users. "
|
186 |
+
prompt += "You help book appointments in Google Calendar using Indian Standard Time. "
|
187 |
+
prompt += function_description
|
188 |
+
|
189 |
+
# Add conversation history to the prompt
|
190 |
+
for message in conversation_history:
|
191 |
+
if message["role"] == "user":
|
192 |
+
prompt += f"\n\nUser: {message['content']}"
|
193 |
+
elif message["role"] == "assistant":
|
194 |
+
prompt += f"\n\nAssistant: {message['content']}"
|
195 |
+
|
196 |
+
# Add the current user message
|
197 |
+
prompt += f"\n\nUser: {user_input}\n\nAssistant:"
|
198 |
+
|
199 |
+
# Generate response from Llama
|
200 |
+
response = llm_pipeline(prompt, max_new_tokens=1024, do_sample=True, temperature=0.1)
|
201 |
+
llama_response = response[0]['generated_text'][len(prompt):].strip()
|
202 |
+
|
203 |
+
# Check if Llama wants to call a function
|
204 |
+
function_args = extract_function_call(llama_response)
|
205 |
+
|
206 |
+
if function_args and "name" in function_args and "date" in function_args and "time" in function_args:
|
207 |
+
print(f"Function arguments from Llama: {json.dumps(function_args, indent=2)}")
|
208 |
+
|
209 |
+
# Add to calendar
|
210 |
+
try:
|
211 |
+
# Call the function but ignore the return value (we don't need the link)
|
212 |
+
add_event_to_calendar(
|
213 |
+
function_args["name"],
|
214 |
+
function_args["date"],
|
215 |
+
function_args["time"]
|
216 |
+
)
|
217 |
+
|
218 |
+
# Construct a response that confirms booking but doesn't include a link
|
219 |
+
final_response = f"Great! I've booked an appointment for {function_args['name']} on {function_args['date']} at {function_args['time']} (Indian Standard Time). The appointment has been added to your calendar."
|
220 |
+
|
221 |
+
except Exception as e:
|
222 |
+
final_response = f"I attempted to book an appointment, but encountered an error: {str(e)}"
|
223 |
+
|
224 |
+
# Update conversation history
|
225 |
+
conversation_history.append({"role": "user", "content": user_input})
|
226 |
+
conversation_history.append({"role": "assistant", "content": final_response})
|
227 |
+
|
228 |
+
return final_response, conversation_history
|
229 |
+
else:
|
230 |
+
# No function call detected, just return Llama's response
|
231 |
+
conversation_history.append({"role": "user", "content": user_input})
|
232 |
+
conversation_history.append({"role": "assistant", "content": llama_response})
|
233 |
+
|
234 |
+
return llama_response, conversation_history
|
235 |
+
|
236 |
+
except Exception as e:
|
237 |
+
print(f"Error in process_with_llama: {str(e)}")
|
238 |
+
return f"Error: {str(e)}", conversation_history
|
239 |
+
|
240 |
+
# System prompt for conversation
|
241 |
+
system_prompt = """You are an appointment booking assistant for Indian users.
|
242 |
+
When someone asks to book an appointment, collect:
|
243 |
+
|
244 |
+
1. Their name
|
245 |
+
2. The date (in YYYY-MM-DD format)
|
246 |
+
3. The time (in either 12-hour format like '2:30 PM' or 24-hour format like '14:30')
|
247 |
+
|
248 |
+
All appointments are in Indian Standard Time (IST).
|
249 |
+
|
250 |
+
If any information is missing, ask for it politely. Once you have all details, use the
|
251 |
+
book_appointment function to add it to the calendar.
|
252 |
+
|
253 |
+
IMPORTANT: After booking an appointment, simply confirm the details. Do not include
|
254 |
+
any links or mention viewing the appointment details. The user does not need to click
|
255 |
+
any links to view their appointment.
|
256 |
+
|
257 |
+
IMPORTANT: Make sure to interpret times correctly. If a user says '2 PM' or just '2',
|
258 |
+
this likely means 2:00 PM (14:00) in 24-hour format."""
|
259 |
+
|
260 |
+
# Initialize model and tokenizer once at startup
|
261 |
+
model, tokenizer = load_llama_model()
|
262 |
+
|
263 |
+
# Create text generation pipeline
|
264 |
+
llm_pipeline = pipeline(
|
265 |
+
"text-generation",
|
266 |
+
model=model,
|
267 |
+
tokenizer=tokenizer,
|
268 |
+
return_full_text=True
|
269 |
+
)
|
270 |
+
|
271 |
+
# Create Gradio interface
|
272 |
+
def create_interface():
|
273 |
+
# Initialize conversation history
|
274 |
+
conversation_history = [{"role": "system", "content": system_prompt}]
|
275 |
+
|
276 |
+
with gr.Blocks() as app:
|
277 |
+
gr.Markdown("# Indian Time Zone Appointment Booking with Llama 3.1")
|
278 |
+
gr.Markdown("Say something like 'Book an appointment for John on May 10th at 2pm'")
|
279 |
+
|
280 |
+
# Chat interface
|
281 |
+
chatbot = gr.Chatbot()
|
282 |
+
msg = gr.Textbox(placeholder="Type your message here...", label="Message")
|
283 |
+
clear = gr.Button("Clear Chat")
|
284 |
+
|
285 |
+
# State for conversation history
|
286 |
+
state = gr.State(conversation_history)
|
287 |
+
|
288 |
+
# Handle user input
|
289 |
+
def user_input(message, history, conv_history):
|
290 |
+
if message.strip() == "":
|
291 |
+
return "", history, conv_history
|
292 |
+
|
293 |
+
# Get response from Llama
|
294 |
+
response, updated_conv_history = process_with_llama(message, conv_history, llm_pipeline)
|
295 |
+
|
296 |
+
# Update chat display
|
297 |
+
history.append((message, response))
|
298 |
+
|
299 |
+
return "", history, updated_conv_history
|
300 |
+
|
301 |
+
# Connect components
|
302 |
+
msg.submit(user_input, [msg, chatbot, state], [msg, chatbot, state])
|
303 |
+
clear.click(lambda: ([], [{"role": "system", "content": system_prompt}]), None, [chatbot, state])
|
304 |
+
|
305 |
+
return app
|
306 |
+
|
307 |
+
# Create and launch the app
|
308 |
+
app = create_interface()
|
309 |
+
|
310 |
+
# Launch for Spaces
|
311 |
+
if __name__ == "__main__":
|
312 |
+
app.launch()
|