Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,297 +1,137 @@
|
|
1 |
-
import os
|
2 |
import json
|
3 |
-
import re
|
4 |
-
import datetime
|
5 |
-
from google.oauth2 import service_account
|
6 |
-
from googleapiclient.discovery import build
|
7 |
import gradio as gr
|
8 |
-
import
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
#
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
def format_time(time_str):
|
35 |
-
"""Format time input to ensure 24-hour format"""
|
36 |
-
# Handle AM/PM format
|
37 |
-
time_str = time_str.strip().upper()
|
38 |
-
is_pm = 'PM' in time_str
|
39 |
-
|
40 |
-
# Remove AM/PM
|
41 |
-
time_str = time_str.replace('AM', '').replace('PM', '').strip()
|
42 |
-
|
43 |
-
# Parse hours and minutes
|
44 |
-
if ':' in time_str:
|
45 |
-
parts = time_str.split(':')
|
46 |
-
hours = int(parts[0])
|
47 |
-
minutes = int(parts[1]) if len(parts) > 1 else 0
|
48 |
-
else:
|
49 |
-
hours = int(time_str)
|
50 |
-
minutes = 0
|
51 |
-
|
52 |
-
# Convert to 24-hour format if needed
|
53 |
-
if is_pm and hours < 12:
|
54 |
-
hours += 12
|
55 |
-
elif not is_pm and hours == 12:
|
56 |
-
hours = 0
|
57 |
-
|
58 |
-
# Return formatted time
|
59 |
-
return f"{hours:02d}:{minutes:02d}"
|
60 |
-
|
61 |
-
def add_event_to_calendar(name, date, time_str, duration_minutes=60):
|
62 |
-
"""Add an event to Google Calendar using Indian time zone"""
|
63 |
-
service = get_calendar_service()
|
64 |
-
|
65 |
-
# Format time properly
|
66 |
-
formatted_time = format_time(time_str)
|
67 |
-
print(f"Input time: {time_str}, Formatted time: {formatted_time}")
|
68 |
-
|
69 |
-
# For debugging - show the date and time being used
|
70 |
-
print(f"Using date: {date}, time: {formatted_time}")
|
71 |
-
|
72 |
-
# Create event
|
73 |
-
event = {
|
74 |
-
'summary': f"Appointment with {name}",
|
75 |
-
'description': f"Meeting with {name}",
|
76 |
-
'start': {
|
77 |
-
'dateTime': f"{date}T{formatted_time}:00",
|
78 |
-
'timeZone': 'Asia/Kolkata', # Indian Standard Time
|
79 |
-
},
|
80 |
-
'end': {
|
81 |
-
'dateTime': f"{date}T{formatted_time}:00", # Will add duration below
|
82 |
-
'timeZone': 'Asia/Kolkata', # Indian Standard Time
|
83 |
-
},
|
84 |
}
|
85 |
|
86 |
-
#
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
print(f"Calendar ID: {CALENDAR_ID}")
|
103 |
-
print(f"Event details: {json.dumps(event, indent=2)}")
|
104 |
-
raise
|
105 |
-
|
106 |
-
def extract_function_call(text):
|
107 |
-
"""Extract function call parameters from Llama's response text"""
|
108 |
-
# Look for JSON-like structure in the response
|
109 |
-
json_pattern = r'```json\s*({.*?})\s*```'
|
110 |
-
matches = re.findall(json_pattern, text, re.DOTALL)
|
111 |
-
|
112 |
-
if matches:
|
113 |
-
try:
|
114 |
-
return json.loads(matches[0])
|
115 |
-
except json.JSONDecodeError:
|
116 |
-
pass
|
117 |
-
|
118 |
-
# Try to find a pattern like {"name": "John", "date": "2025-05-10", "time": "14:30"}
|
119 |
-
json_pattern = r'{.*?"name".*?:.*?"(.*?)".*?"date".*?:.*?"(.*?)".*?"time".*?:.*?"(.*?)".*?}'
|
120 |
-
matches = re.findall(json_pattern, text, re.DOTALL)
|
121 |
-
|
122 |
-
if matches and len(matches[0]) == 3:
|
123 |
-
name, date, time = matches[0]
|
124 |
-
return {"name": name, "date": date, "time": time}
|
125 |
-
|
126 |
-
# If no JSON structure is found, try to extract individual fields
|
127 |
-
name_match = re.search(r'name["\s:]+([^",]+)', text, re.IGNORECASE)
|
128 |
-
date_match = re.search(r'date["\s:]+([^",]+)', text, re.IGNORECASE)
|
129 |
-
time_match = re.search(r'time["\s:]+([^",]+)', text, re.IGNORECASE)
|
130 |
-
|
131 |
-
result = {}
|
132 |
-
if name_match:
|
133 |
-
result["name"] = name_match.group(1).strip()
|
134 |
-
if date_match:
|
135 |
-
result["date"] = date_match.group(1).strip()
|
136 |
-
if time_match:
|
137 |
-
result["time"] = time_match.group(1).strip()
|
138 |
|
139 |
-
return
|
140 |
|
141 |
-
|
142 |
-
|
143 |
try:
|
144 |
-
#
|
145 |
-
|
146 |
-
You have access to the following function:
|
147 |
-
|
148 |
-
book_appointment
|
149 |
-
Description: Book an appointment in Google Calendar
|
150 |
-
Parameters:
|
151 |
-
- name: string, Name of the person for the appointment
|
152 |
-
- date: string, Date of appointment in YYYY-MM-DD format
|
153 |
-
- time: string, Time of appointment (e.g., '2:30 PM', '14:30')
|
154 |
-
|
155 |
-
When you need to book an appointment, output the function call in JSON format like this:
|
156 |
-
```json
|
157 |
-
{"name": "John Doe", "date": "2025-05-10", "time": "14:30"}
|
158 |
-
```
|
159 |
-
"""
|
160 |
-
|
161 |
-
# Create a prompt that includes conversation history and function description
|
162 |
-
prompt = "You are an appointment booking assistant for Indian users. "
|
163 |
-
prompt += "You help book appointments in Google Calendar using Indian Standard Time. "
|
164 |
-
prompt += function_description
|
165 |
-
|
166 |
-
# Add conversation history to the prompt
|
167 |
-
for message in conversation_history:
|
168 |
-
if message["role"] == "user":
|
169 |
-
prompt += f"\n\nUser: {message['content']}"
|
170 |
-
elif message["role"] == "assistant":
|
171 |
-
prompt += f"\n\nAssistant: {message['content']}"
|
172 |
|
173 |
-
#
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
llama_response = response[0]['generated_text'][len(prompt):].strip()
|
179 |
-
|
180 |
-
# Check if Llama wants to call a function
|
181 |
-
function_args = extract_function_call(llama_response)
|
182 |
-
|
183 |
-
if function_args and "name" in function_args and "date" in function_args and "time" in function_args:
|
184 |
-
print(f"Function arguments from Llama: {json.dumps(function_args, indent=2)}")
|
185 |
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
final_response = f"Great! I've booked an appointment for {function_args['name']} on {function_args['date']} at {function_args['time']} (Indian Standard Time). The appointment has been added to your calendar."
|
197 |
|
198 |
-
|
199 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
|
201 |
-
|
202 |
-
|
203 |
-
conversation_history.append({"role": "assistant", "content": final_response})
|
204 |
-
|
205 |
-
return final_response, conversation_history
|
206 |
-
else:
|
207 |
-
# No function call detected, just return Llama's response
|
208 |
-
conversation_history.append({"role": "user", "content": user_input})
|
209 |
-
conversation_history.append({"role": "assistant", "content": llama_response})
|
210 |
|
211 |
-
return llama_response, conversation_history
|
212 |
-
|
213 |
except Exception as e:
|
214 |
-
|
215 |
-
return f"Error: {str(e)}", conversation_history
|
216 |
-
|
217 |
-
# System prompt for conversation
|
218 |
-
system_prompt = """You are an appointment booking assistant for Indian users.
|
219 |
-
When someone asks to book an appointment, collect:
|
220 |
-
|
221 |
-
1. Their name
|
222 |
-
2. The date (in YYYY-MM-DD format)
|
223 |
-
3. The time (in either 12-hour format like '2:30 PM' or 24-hour format like '14:30')
|
224 |
-
|
225 |
-
All appointments are in Indian Standard Time (IST).
|
226 |
-
|
227 |
-
If any information is missing, ask for it politely. Once you have all details, use the
|
228 |
-
book_appointment function to add it to the calendar.
|
229 |
-
|
230 |
-
IMPORTANT: After booking an appointment, simply confirm the details. Do not include
|
231 |
-
any links or mention viewing the appointment details. The user does not need to click
|
232 |
-
any links to view their appointment.
|
233 |
-
|
234 |
-
IMPORTANT: Make sure to interpret times correctly. If a user says '2 PM' or just '2',
|
235 |
-
this likely means 2:00 PM (14:00) in 24-hour format."""
|
236 |
-
|
237 |
-
# Initialize model and pipeline
|
238 |
-
def load_model_and_pipeline():
|
239 |
-
model = AutoModelForCausalLM.from_pretrained(
|
240 |
-
MODEL_ID,
|
241 |
-
torch_dtype=torch.bfloat16,
|
242 |
-
device_map="auto",
|
243 |
-
low_cpu_mem_usage=True
|
244 |
-
)
|
245 |
-
|
246 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
247 |
-
|
248 |
-
# Create text generation pipeline
|
249 |
-
llm_pipeline = pipeline(
|
250 |
-
"text-generation",
|
251 |
-
model=model,
|
252 |
-
tokenizer=tokenizer,
|
253 |
-
return_full_text=True,
|
254 |
-
max_new_tokens=1024
|
255 |
-
)
|
256 |
-
|
257 |
-
return llm_pipeline
|
258 |
-
|
259 |
-
# Initialize conversation history with system prompt
|
260 |
-
conversation_history = [{"role": "system", "content": system_prompt}]
|
261 |
-
|
262 |
-
# Load model and pipeline at startup
|
263 |
-
llm_pipe = load_model_and_pipeline()
|
264 |
|
265 |
# Create Gradio interface
|
266 |
-
|
267 |
-
gr.
|
268 |
-
|
269 |
-
|
270 |
-
# Chat interface
|
271 |
-
chatbot = gr.Chatbot()
|
272 |
-
msg = gr.Textbox(placeholder="Type your message here...", label="Message")
|
273 |
-
clear = gr.Button("Clear Chat")
|
274 |
-
|
275 |
-
# State for conversation history
|
276 |
-
state = gr.State(conversation_history)
|
277 |
-
|
278 |
-
# Handle user input
|
279 |
-
def user_input(message, history, conv_history):
|
280 |
-
if message.strip() == "":
|
281 |
-
return "", history, conv_history
|
282 |
|
283 |
-
|
284 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
285 |
|
286 |
-
|
287 |
-
|
|
|
|
|
|
|
288 |
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
294 |
|
295 |
-
# Launch the app
|
296 |
if __name__ == "__main__":
|
297 |
demo.launch()
|
|
|
|
|
1 |
import json
|
|
|
|
|
|
|
|
|
2 |
import gradio as gr
|
3 |
+
from huggingface_hub import InferenceClient
|
4 |
+
|
5 |
+
# Function to call the Llama 3.1 8B model through Hugging Face API
|
6 |
+
def call_llama_model(user_query):
|
7 |
+
# Initialize the inference client
|
8 |
+
client = InferenceClient("meta-llama/Meta-Llama-3.1-8B-Instruct")
|
9 |
+
|
10 |
+
# Define the addition function schema
|
11 |
+
function_schema = {
|
12 |
+
"name": "add_numbers",
|
13 |
+
"description": "Add two numbers together",
|
14 |
+
"parameters": {
|
15 |
+
"type": "object",
|
16 |
+
"properties": {
|
17 |
+
"num1": {
|
18 |
+
"type": "number",
|
19 |
+
"description": "First number to add"
|
20 |
+
},
|
21 |
+
"num2": {
|
22 |
+
"type": "number",
|
23 |
+
"description": "Second number to add"
|
24 |
+
}
|
25 |
+
},
|
26 |
+
"required": ["num1", "num2"]
|
27 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
}
|
29 |
|
30 |
+
# Create the system prompt with function definition
|
31 |
+
system_prompt = f"""You have access to the following function:
|
32 |
+
{json.dumps(function_schema, indent=2)}
|
33 |
+
|
34 |
+
Your task is to extract two numbers from the user's query and call the add_numbers function.
|
35 |
+
Format your response as JSON with the function name and parameters.
|
36 |
+
Only respond with valid JSON containing the function call, nothing else.
|
37 |
+
"""
|
38 |
+
|
39 |
+
# Call the model
|
40 |
+
response = client.text_generation(
|
41 |
+
prompt=f"<|system|>\n{system_prompt}\n<|user|>\n{user_query}\n<|assistant|>",
|
42 |
+
max_new_tokens=256,
|
43 |
+
temperature=0.1,
|
44 |
+
return_full_text=False
|
45 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
+
return response
|
48 |
|
49 |
+
# Function to parse the model response and calculate the result
|
50 |
+
def process_addition(query):
|
51 |
try:
|
52 |
+
# Get model response
|
53 |
+
model_response = call_llama_model(query)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
+
# Try to parse the JSON response
|
56 |
+
try:
|
57 |
+
# Find the JSON part in the response (it might have additional text)
|
58 |
+
json_start = model_response.find('{')
|
59 |
+
json_end = model_response.rfind('}') + 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
+
if json_start >= 0 and json_end > json_start:
|
62 |
+
json_str = model_response[json_start:json_end]
|
63 |
+
response_data = json.loads(json_str)
|
64 |
+
else:
|
65 |
+
return f"Error: No valid JSON found in response: {model_response}"
|
66 |
+
|
67 |
+
# Check if it has a function call
|
68 |
+
if "function_call" in response_data:
|
69 |
+
function_name = response_data["function_call"]["name"]
|
70 |
+
params = response_data["function_call"]["parameters"]
|
|
|
71 |
|
72 |
+
if function_name == "add_numbers":
|
73 |
+
num1 = params["num1"]
|
74 |
+
num2 = params["num2"]
|
75 |
+
result = num1 + num2
|
76 |
+
|
77 |
+
# Return a formatted response
|
78 |
+
return f"""
|
79 |
+
Model parsed your query as:
|
80 |
+
- First number: {num1}
|
81 |
+
- Second number: {num2}
|
82 |
+
|
83 |
+
Function called: {function_name}
|
84 |
+
Result: {result}
|
85 |
+
"""
|
86 |
+
else:
|
87 |
+
return f"Unknown function: {function_name}"
|
88 |
+
else:
|
89 |
+
return f"No function call found in response: {response_data}"
|
90 |
|
91 |
+
except json.JSONDecodeError as e:
|
92 |
+
return f"Error parsing JSON: {str(e)}\nRaw response: {model_response}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
|
|
|
|
94 |
except Exception as e:
|
95 |
+
return f"Error: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
# Create Gradio interface
|
98 |
+
def create_demo():
|
99 |
+
with gr.Blocks() as demo:
|
100 |
+
gr.Markdown("# Llama 3.1 Function Calling Demo: Addition")
|
101 |
+
gr.Markdown("Enter a query asking to add two numbers (e.g., 'Add 25 and 17' or 'What's 42 plus 58?')")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
+
with gr.Row():
|
104 |
+
with gr.Column():
|
105 |
+
query_input = gr.Textbox(
|
106 |
+
label="Your Query",
|
107 |
+
placeholder="Add 25 and 17"
|
108 |
+
)
|
109 |
+
submit_btn = gr.Button("Calculate")
|
110 |
+
|
111 |
+
with gr.Column():
|
112 |
+
output = gr.Textbox(label="Result")
|
113 |
|
114 |
+
submit_btn.click(
|
115 |
+
fn=process_addition,
|
116 |
+
inputs=query_input,
|
117 |
+
outputs=output
|
118 |
+
)
|
119 |
|
120 |
+
gr.Examples(
|
121 |
+
examples=[
|
122 |
+
"Add 25 and 17",
|
123 |
+
"What is 42 plus 58?",
|
124 |
+
"Can you sum 123 and 456?",
|
125 |
+
"I need to add 7.5 and 2.25",
|
126 |
+
"What's the total of 1000 and 2000?"
|
127 |
+
],
|
128 |
+
inputs=query_input
|
129 |
+
)
|
130 |
+
|
131 |
+
return demo
|
132 |
+
|
133 |
+
# Create and launch the demo
|
134 |
+
demo = create_demo()
|
135 |
|
|
|
136 |
if __name__ == "__main__":
|
137 |
demo.launch()
|