File size: 64,401 Bytes
78c273c c814750 78c273c c814750 78c273c a2fb11d 6e47a0b c814750 a2fb11d 78c273c a2fb11d c814750 a2fb11d 78c273c a2fb11d 78c273c a2fb11d 78c273c a2fb11d 78c273c a2fb11d a387769 a2fb11d 78c273c b1f519c 78c273c c814750 78c273c 3ddece1 78c273c 3ddece1 78c273c 3ddece1 78c273c 3ddece1 78c273c 3ddece1 78c273c 3ddece1 78c273c 3ddece1 78c273c 3ddece1 78c273c 3ddece1 78c273c 3ddece1 78c273c 3ddece1 78c273c 3ddece1 78c273c 3ddece1 78c273c 3ddece1 78c273c 3ddece1 78c273c 3ddece1 78c273c 3ddece1 78c273c 3ddece1 78c273c 3ddece1 78c273c 3ddece1 78c273c 3ddece1 78c273c 3ddece1 78c273c 3ddece1 78c273c 3ddece1 78c273c 8905882 78c273c 8905882 78c273c 8905882 78c273c 8905882 78c273c 8905882 78c273c 8905882 78c273c 8905882 083b359 8905882 78c273c 8905882 78c273c 8905882 78c273c 8905882 78c273c 8905882 78c273c 8905882 78c273c 8905882 78c273c 8905882 6d2493f 8905882 78c273c 6d2493f 78c273c 8905882 78c273c 6d2493f 78c273c 8905882 78c273c 8905882 78c273c 8905882 78c273c 8905882 78c273c 8905882 78c273c 8905882 78c273c 8905882 78c273c 8905882 78c273c 8905882 78c273c 8905882 78c273c 8905882 78c273c 8905882 78c273c 8905882 78c273c 8905882 78c273c 8905882 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 |
import os
import io
import time
import torch
import librosa
import requests
import tempfile
import threading
import queue
import traceback
import numpy as np
import soundfile as sf
import gradio as gr
from datetime import datetime
from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer, pipeline, logging as trf_logging
from huggingface_hub import login, hf_hub_download, scan_cache_dir
import speech_recognition as sr
import openai
import torch
print("CUDA available:", torch.cuda.is_available())
print("CUDA device:", torch.cuda.current_device() if torch.cuda.is_available() else "None")
# Set up environment variables and timeouts
os.environ["HF_HUB_DOWNLOAD_TIMEOUT"] = "300" # 5-minute timeout
# Enable verbose logging
trf_logging.set_verbosity_info()
# Get API keys from environment
HF_TOKEN = os.getenv("HF_TOKEN")
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
# Set OpenAI API key
openai.api_key = OPENAI_API_KEY
# Login to Hugging Face
if HF_TOKEN:
print("🔐 Logging into Hugging Face with token...")
login(token=HF_TOKEN)
else:
print("⚠️ HF_TOKEN not found. Proceeding without login...")
# # Set up device (GPU if available, otherwise CPU)
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# print(f"🔧 Using device: {device}")
# Initialize model variables
tts_model = None
asr_model = None
# Define repository IDs
tts_repo_id = "ai4bharat/IndicF5"
asr_repo_id = "facebook/wav2vec2-large-xlsr-53" # Multilingual ASR model
# TTS model wrapper class to standardize the interface
class TTSModelWrapper:
def __init__(self, model):
self.model = model
def generate(self, text, ref_audio_path, ref_text):
try:
if self.model is None:
raise ValueError("Model not initialized")
output = self.model(
text,
ref_audio_path=ref_audio_path,
ref_text=ref_text
)
return output
except Exception as e:
print(f"Error in TTS generation: {e}")
traceback.print_exc()
return None
def load_tts_model_with_retry(max_retries=3, retry_delay=5):
global tts_model, tts_model_wrapper
print("Checking if TTS model is in cache...")
try:
cache_info = scan_cache_dir()
model_in_cache = any(tts_repo_id in repo.repo_id for repo in cache_info.repos)
if model_in_cache:
print(f"Model {tts_repo_id} found in cache, loading locally...")
tts_model = AutoModel.from_pretrained(
tts_repo_id,
trust_remote_code=True,
local_files_only=True,
device_map="auto",
torch_dtype=torch.float16
)
tts_model_wrapper = TTSModelWrapper(tts_model)
print("TTS model loaded from cache successfully!")
return
except Exception as e:
print(f"Cache check failed: {e}")
for attempt in range(max_retries):
try:
print(f"Loading {tts_repo_id} model (attempt {attempt+1}/{max_retries})...")
tts_model = AutoModel.from_pretrained(
tts_repo_id,
trust_remote_code=True,
revision="main",
use_auth_token=HF_TOKEN,
low_cpu_mem_usage=True,
device_map="auto" # <-- Use device_map here as well
)
tts_model_wrapper = TTSModelWrapper(tts_model)
print(f"TTS model loaded successfully! Type: {type(tts_model)}")
return
except Exception as e:
print(f"⚠️ Attempt {attempt+1}/{max_retries} failed: {e}")
if attempt < max_retries - 1:
print(f"Waiting {retry_delay} seconds before retrying...")
time.sleep(retry_delay)
retry_delay *= 1.5
try:
print("Trying with fallback options...")
tts_model = AutoModel.from_pretrained(
tts_repo_id,
trust_remote_code=True,
revision="main",
local_files_only=False,
use_auth_token=HF_TOKEN,
force_download=False,
resume_download=True,
device_map="auto" # <-- And here too
)
tts_model_wrapper = TTSModelWrapper(tts_model)
print("TTS model loaded with fallback options!")
except Exception as e2:
print(f"❌ All attempts to load TTS model failed: {e2}")
print("Will continue without TTS model loaded.")
# Reduce chunk size for faster streaming and lower latency
def split_into_chunks(text, max_length=15): # Reduced from 30 to 15
sentence_markers = ['.', '?', '!', ';', ':', '।', '॥']
chunks = []
current = ""
for char in text:
current += char
if char in sentence_markers and current.strip():
chunks.append(current.strip())
current = ""
if current.strip():
chunks.append(current.strip())
final_chunks = []
for chunk in chunks:
if len(chunk) <= max_length:
final_chunks.append(chunk)
else:
comma_splits = chunk.split(',')
current_part = ""
for part in comma_splits:
if len(current_part) + len(part) <= max_length:
if current_part:
current_part += ","
current_part += part
else:
if current_part:
final_chunks.append(current_part.strip())
current_part = part
if current_part:
final_chunks.append(current_part.strip())
print(f"Split text into {len(final_chunks)} chunks")
return final_chunks
def load_asr_model():
global asr_model
try:
print(f"Loading ASR model from {asr_repo_id}...")
asr_model = pipeline("automatic-speech-recognition", model=asr_repo_id, device=device)
print("ASR model loaded successfully!")
except Exception as e:
print(f"Error loading ASR model: {e}")
print("Will use Google's speech recognition API instead.")
asr_model = None
class SpeechRecognizer:
def __init__(self):
self.recognizer = sr.Recognizer()
self.using_huggingface = asr_model is not None
def recognize_from_file(self, audio_path, language="ml-IN"):
"""Recognize speech from audio file with fallback mechanisms"""
print(f"Recognizing speech from {audio_path}")
try:
# Try Hugging Face model first if available
if self.using_huggingface:
try:
result = asr_model(audio_path)
transcription = result["text"]
print(f"HF ASR result: {transcription}")
return transcription
except Exception as e:
print(f"HF ASR failed: {e}, falling back to Google")
# Fallback to Google's ASR
with sr.AudioFile(audio_path) as source:
audio_data = self.recognizer.record(source)
text = self.recognizer.recognize_google(audio_data, language=language)
print(f"Google ASR result: {text}")
return text
except Exception as e:
print(f"Speech recognition failed: {e}")
return ""
def recognize_from_microphone(self, language="ml-IN", timeout=5):
"""Recognize speech from microphone"""
print("Listening to microphone...")
try:
with sr.Microphone() as source:
self.recognizer.adjust_for_ambient_noise(source)
print("Speak now...")
try:
audio = self.recognizer.listen(source, timeout=timeout)
print("Processing speech...")
# Save audio to temporary file for potential HF model processing
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.wav')
temp_file.close()
with open(temp_file.name, "wb") as f:
f.write(audio.get_wav_data())
# Process with available model
if self.using_huggingface:
try:
result = asr_model(temp_file.name)
text = result["text"]
print(f"HF ASR result: {text}")
os.unlink(temp_file.name)
return text
except Exception as e:
print(f"HF ASR failed: {e}, falling back to Google")
# Fallback to Google
text = self.recognizer.recognize_google(audio, language=language)
print(f"Google ASR result: {text}")
os.unlink(temp_file.name)
return text
except sr.WaitTimeoutError:
print("No speech detected within timeout period")
return ""
except Exception as e:
print(f"Speech recognition error: {e}")
return ""
except Exception as e:
print(f"Microphone access error: {e}")
return ""
class ConversationManager:
def __init__(self):
self.conversation_history = []
self.system_prompt = (
#"You are a helpful, friendly assistant who speaks Malayalam fluently. "
#"Keep your responses concise and conversational. "
#"If the user speaks in English, you can respond in English. "
#"If the user speaks in Malayalam, respond in Malayalam."
"You are a helpful and friendly assistant who speaks Malayalam fluently. "
"Respond like you're talking to a close friend over the phone — casual, warm, and natural. "
"Keep your responses short, to the point, and avoid sounding robotic or formal. "
"Use Malayalam when the user uses Malayalam, and English when the user uses English. "
"Use the kind of expressions and tone you'd use while chatting with someone from Kerala."
)
def add_message(self, role, content):
self.conversation_history.append({"role": role, "content": content})
def get_formatted_history(self):
"""Format conversation history for OpenAI API"""
messages = [{"role": "system", "content": self.system_prompt}]
for msg in self.conversation_history:
if msg["role"] == "user":
messages.append({"role": "user", "content": msg["content"]})
else:
messages.append({"role": "assistant", "content": msg["content"]})
return messages
def generate_response(self, user_input):
"""Generate response using GPT-3.5 Turbo"""
if not openai.api_key:
return "I'm sorry, but the language model is not available right now."
self.add_message("user", user_input)
try:
# Format history for the model
messages = self.get_formatted_history()
print(f"Sending prompt to OpenAI: {len(messages)} messages")
# Generate response with GPT-3.5 Turbo
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=messages,
max_tokens=300,
temperature=0.7,
top_p=0.9,
)
# Extract text response
response_text = response.choices[0].message["content"].strip()
print(f"GPT-3.5 response: {response_text}")
# Add to history
self.add_message("assistant", response_text)
return response_text
except Exception as e:
print(f"Error generating response: {e}")
fallback_response = "I'm having trouble thinking right now. Can we try again?"
self.add_message("assistant", fallback_response)
return fallback_response
def remove_noise(audio_data, threshold=0.01):
"""Apply simple noise gate to remove low-level noise"""
if audio_data is None:
return np.zeros(1000)
# Convert to numpy if needed
if isinstance(audio_data, torch.Tensor):
audio_data = audio_data.detach().cpu().numpy()
if isinstance(audio_data, list):
audio_data = np.array(audio_data)
# Apply noise gate
noise_mask = np.abs(audio_data) < threshold
clean_audio = audio_data.copy()
clean_audio[noise_mask] = 0
return clean_audio
def apply_smoothing(audio_data, window_size=5):
"""Apply gentle smoothing to reduce artifacts"""
if audio_data is None or len(audio_data) < window_size*2:
return audio_data
# Simple moving average filter
kernel = np.ones(window_size) / window_size
smoothed = np.convolve(audio_data, kernel, mode='same')
# Keep original at the edges
smoothed[:window_size] = audio_data[:window_size]
smoothed[-window_size:] = audio_data[-window_size:]
return smoothed
def enhance_audio(audio_data):
"""Process audio to improve quality and reduce noise"""
if audio_data is None:
return np.zeros(1000)
# Ensure numpy array
if isinstance(audio_data, torch.Tensor):
audio_data = audio_data.detach().cpu().numpy()
if isinstance(audio_data, list):
audio_data = np.array(audio_data)
# Ensure correct shape and dtype
if len(audio_data.shape) > 1:
audio_data = audio_data.flatten()
if audio_data.dtype != np.float32:
audio_data = audio_data.astype(np.float32)
# Skip processing if audio is empty or too short
if audio_data.size < 100:
return audio_data
# Check if the audio has reasonable amplitude
rms = np.sqrt(np.mean(audio_data**2))
print(f"Initial RMS: {rms}")
# Apply gain if needed
if rms < 0.05: # Very quiet
target_rms = 0.2
gain = target_rms / max(rms, 0.0001)
print(f"Applying gain factor: {gain}")
audio_data = audio_data * gain
# Remove DC offset
audio_data = audio_data - np.mean(audio_data)
# Apply noise gate to remove low-level noise
audio_data = remove_noise(audio_data, threshold=0.01)
# Apply gentle smoothing to reduce artifacts
audio_data = apply_smoothing(audio_data, window_size=3)
# Apply soft limiting to prevent clipping
max_amp = np.max(np.abs(audio_data))
if max_amp > 0.95:
audio_data = 0.95 * audio_data / max_amp
# Apply subtle compression for better audibility
audio_data = np.tanh(audio_data * 1.1) * 0.9
return audio_data
def split_into_chunks(text, max_length=8):
"""Split text into smaller chunks based on punctuation and length"""
# First split by sentences
sentence_markers = ['.', '?', '!', ';', ':', '।', '॥']
chunks = []
current = ""
# Initial coarse splitting by sentence markers
for char in text:
current += char
if char in sentence_markers and current.strip():
chunks.append(current.strip())
current = ""
if current.strip():
chunks.append(current.strip())
# Further break down long sentences
final_chunks = []
for chunk in chunks:
if len(chunk) <= max_length:
final_chunks.append(chunk)
else:
# Try splitting by commas for long sentences
comma_splits = chunk.split(',')
current_part = ""
for part in comma_splits:
if len(current_part) + len(part) <= max_length:
if current_part:
current_part += ","
current_part += part
else:
if current_part:
final_chunks.append(current_part.strip())
current_part = part
if current_part:
final_chunks.append(current_part.strip())
print(f"Split text into {len(final_chunks)} chunks")
return final_chunks
class StreamingTTS:
def __init__(self):
self.is_generating = False
self.should_stop = False
self.temp_dir = None
self.ref_audio_path = None
self.output_file = None
self.all_chunks = []
self.sample_rate = 24000 # Default sample rate
self.current_text = "" # Track current text being processed
# Create temp directory
try:
self.temp_dir = tempfile.mkdtemp()
print(f"Created temp directory: {self.temp_dir}")
except Exception as e:
print(f"Error creating temp directory: {e}")
self.temp_dir = "." # Use current directory as fallback
def prepare_ref_audio(self, ref_audio, ref_sr):
"""Prepare reference audio with enhanced quality"""
try:
if self.ref_audio_path is None:
self.ref_audio_path = os.path.join(self.temp_dir, "ref_audio.wav")
# Process the reference audio to ensure clean quality
ref_audio = enhance_audio(ref_audio)
# Save the reference audio
sf.write(self.ref_audio_path, ref_audio, ref_sr, format='WAV', subtype='FLOAT')
print(f"Saved reference audio to: {self.ref_audio_path}")
# Verify file was created
if os.path.exists(self.ref_audio_path):
print(f"Reference audio saved successfully: {os.path.getsize(self.ref_audio_path)} bytes")
else:
print("⚠️ Failed to create reference audio file!")
# Create output file
if self.output_file is None:
self.output_file = os.path.join(self.temp_dir, "output.wav")
print(f"Output will be saved to: {self.output_file}")
except Exception as e:
print(f"Error preparing reference audio: {e}")
def cleanup(self):
"""Clean up temporary files"""
if self.temp_dir:
try:
if os.path.exists(self.ref_audio_path):
os.remove(self.ref_audio_path)
if os.path.exists(self.output_file):
os.remove(self.output_file)
os.rmdir(self.temp_dir)
self.temp_dir = None
print("Cleaned up temporary files")
except Exception as e:
print(f"Error cleaning up: {e}")
def generate(self, text, ref_audio, ref_sr, ref_text):
"""Start generation in a new thread with validation"""
if self.is_generating:
print("Already generating speech, please wait")
return
# Store the text for verification
self.current_text = text
print(f"Setting current text to: '{self.current_text}'")
# Check model is loaded
if tts_model_wrapper is None or tts_model is None:
print("⚠️ Model is not loaded. Cannot generate speech.")
return
self.is_generating = True
self.should_stop = False
self.all_chunks = []
# Start in a new thread
threading.Thread(
target=self._process_streaming,
args=(text, ref_audio, ref_sr, ref_text),
daemon=True
).start()
def _process_streaming(self, text, ref_audio, ref_sr, ref_text):
"""Process text in chunks with high-quality audio generation"""
try:
# Double check text matches what we expect
if text != self.current_text:
print(f"⚠️ Text mismatch detected! Expected: '{self.current_text}', Got: '{text}'")
# Use the stored text to be safe
text = self.current_text
# Prepare reference audio
self.prepare_ref_audio(ref_audio, ref_sr)
# Print the text we're actually going to process
print(f"Processing text: '{text}'")
# Split text into smaller chunks for faster processing
chunks = split_into_chunks(text)
print(f"Processing {len(chunks)} chunks")
combined_audio = None
total_start_time = time.time()
# Process each chunk
for i, chunk in enumerate(chunks):
if self.should_stop:
print("Stopping generation as requested")
break
chunk_start = time.time()
print(f"Processing chunk {i+1}/{len(chunks)}: '{chunk}'")
# Generate speech for this chunk
try:
# Set timeout for inference
chunk_timeout = 30 # 30 seconds timeout per chunk
with torch.inference_mode():
# Explicitly pass the chunk text
chunk_audio = tts_model_wrapper.generate(
text=chunk, # Make sure we're using the current chunk
ref_audio_path=self.ref_audio_path,
ref_text=ref_text
)
if chunk_audio is None or (hasattr(chunk_audio, 'size') and chunk_audio.size == 0):
print("⚠️ Empty audio returned for this chunk")
chunk_audio = np.zeros(int(24000 * 0.5)) # 0.5s silence
# Process the audio to improve quality
chunk_audio = enhance_audio(chunk_audio)
chunk_time = time.time() - chunk_start
print(f"✓ Chunk {i+1} processed in {chunk_time:.2f}s")
# Add small silence between chunks
silence = np.zeros(int(24000 * 0.1)) # 0.1s silence
chunk_audio = np.concatenate([chunk_audio, silence])
# Add to our collection
self.all_chunks.append(chunk_audio)
# Combine all chunks so far
if combined_audio is None:
combined_audio = chunk_audio
else:
combined_audio = np.concatenate([combined_audio, chunk_audio])
# Process combined audio for consistent quality
processed_audio = enhance_audio(combined_audio)
# Write intermediate output
sf.write(self.output_file, processed_audio, 24000, format='WAV', subtype='FLOAT')
except Exception as e:
print(f"Error processing chunk {i+1}: {str(e)[:100]}")
continue
total_time = time.time() - total_start_time
print(f"Total generation time: {total_time:.2f}s")
except Exception as e:
print(f"Error in streaming TTS: {str(e)[:200]}")
# Try to write whatever we have so far
if len(self.all_chunks) > 0:
try:
combined = np.concatenate(self.all_chunks)
sf.write(self.output_file, combined, 24000, format='WAV', subtype='FLOAT')
print("Saved partial output")
except Exception as e2:
print(f"Failed to save partial output: {e2}")
finally:
self.is_generating = False
print("Generation complete")
def get_current_audio(self):
"""Get current audio file path for Gradio"""
if self.output_file and os.path.exists(self.output_file):
file_size = os.path.getsize(self.output_file)
if file_size > 0:
return self.output_file
return None
class ConversationEngine:
def __init__(self):
self.conversation_history = []
self.system_prompt = "You are a helpful assistant that speaks Malayalam fluently. Always respond in Malayalam script with proper formatting."
self.saved_voice = None
self.saved_voice_text = ""
self.tts_cache = {} # Cache for TTS outputs
# TTS background processing queue
self.tts_queue = queue.Queue()
self.tts_thread = threading.Thread(target=self.tts_worker, daemon=True)
self.tts_thread.start()
# Initialize streaming TTS
self.streaming_tts = StreamingTTS()
def tts_worker(self):
"""Background worker to process TTS requests"""
while True:
try:
# Get text and callback from queue
text, callback = self.tts_queue.get()
# Generate speech
audio_path = self._generate_tts(text)
# Execute callback with result
if callback:
callback(audio_path)
# Mark task as done
self.tts_queue.task_done()
except Exception as e:
print(f"Error in TTS worker: {e}")
traceback.print_exc()
def transcribe_audio(self, audio_data, language="ml-IN"):
"""Convert audio to text using speech recognition"""
if audio_data is None:
print("No audio data received")
return "No audio detected", ""
# Make sure we have audio data in the expected format
try:
if isinstance(audio_data, tuple) and len(audio_data) == 2:
# Expected format: (sample_rate, audio_samples)
sample_rate, audio_samples = audio_data
else:
print(f"Unexpected audio format: {type(audio_data)}")
return "Invalid audio format", ""
if len(audio_samples) == 0:
print("Empty audio samples")
return "No speech detected", ""
# Save the audio temporarily
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".wav")
temp_file.close()
# Save the audio data to the temporary file
sf.write(temp_file.name, audio_samples, sample_rate)
# Use speech recognition on the file
recognizer = sr.Recognizer()
with sr.AudioFile(temp_file.name) as source:
audio = recognizer.record(source)
text = recognizer.recognize_google(audio, language=language)
print(f"Recognized: {text}")
return text, text
except sr.UnknownValueError:
print("Speech recognition could not understand audio")
return "Could not understand audio", ""
except sr.RequestError as e:
print(f"Could not request results from Google Speech Recognition service: {e}")
return f"Speech recognition service error: {str(e)}", ""
except Exception as e:
print(f"Error processing audio: {e}")
traceback.print_exc()
return f"Error processing audio: {str(e)}", ""
finally:
# Clean up temporary file
if 'temp_file' in locals() and os.path.exists(temp_file.name):
try:
os.unlink(temp_file.name)
except Exception as e:
print(f"Error deleting temporary file: {e}")
def save_reference_voice(self, audio_data, reference_text):
"""Save the reference voice for future TTS generation"""
if audio_data is None or not reference_text.strip():
return "Error: Both reference audio and text are required"
self.saved_voice = audio_data
self.saved_voice_text = reference_text.strip()
# Clear TTS cache when voice changes
self.tts_cache.clear()
# Debug info
sample_rate, audio_samples = audio_data
print(f"Saved reference voice: {len(audio_samples)} samples at {sample_rate}Hz")
print(f"Reference text: {reference_text}")
return f"Voice saved successfully! Reference text: {reference_text}"
def process_text_input(self, text):
"""Process text input from user"""
if text and text.strip():
return text, text
return "No input provided", ""
def generate_response(self, input_text):
"""Generate AI response using GPT-3.5 Turbo"""
if not input_text or not input_text.strip():
return "ഇൻപുട്ട് ലഭിച്ചില്ല. വീണ്ടും ശ്രമിക്കുക.", None # "No input received. Please try again."
try:
# Prepare conversation context from history
messages = [{"role": "system", "content": self.system_prompt}]
# Add previous conversations for context
for entry in self.conversation_history:
role = "user" if entry["role"] == "user" else "assistant"
messages.append({"role": role, "content": entry["content"]})
# Add current input
messages.append({"role": "user", "content": input_text})
# Call OpenAI API
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=messages,
max_tokens=500,
temperature=0.7
)
response_text = response.choices[0].message["content"].strip()
return response_text, None
except Exception as e:
error_msg = f"എറർ: GPT മോഡലിൽ നിന്ന് ഉത്തരം ലഭിക്കുന്നതിൽ പ്രശ്നമുണ്ടായി: {str(e)}"
print(f"Error in GPT response: {e}")
traceback.print_exc()
return error_msg, None
def resample_audio(self, audio, orig_sr, target_sr):
"""Resample audio to match target sample rate only if necessary"""
if orig_sr != target_sr:
print(f"Resampling audio from {orig_sr}Hz to {target_sr}Hz")
return librosa.resample(audio, orig_sr=orig_sr, target_sr=target_sr)
return audio
def _generate_tts(self, text):
"""Internal method to generate TTS without threading"""
if not text or not text.strip():
print("No text provided for TTS generation")
return None
# Check cache first
if text in self.tts_cache:
print("Using cached TTS output")
return self.tts_cache[text]
try:
# Check if we have a saved voice and the TTS model
if self.saved_voice is not None and tts_model is not None:
sample_rate, audio_data = self.saved_voice
# Create a temporary file for the reference audio
ref_temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".wav")
ref_temp_file.close()
print(f"Saving reference audio to {ref_temp_file.name}")
# Save the reference audio data
sf.write(ref_temp_file.name, audio_data, sample_rate)
# Create a temporary file for the output audio
output_temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".wav")
output_temp_file.close()
try:
# Generate speech using IndicF5 - simplified approach from second file
print(f"Generating speech with IndicF5. Text: {text[:30]}...")
start_time = time.time()
# Use torch.no_grad() to save memory and computation
with torch.no_grad():
# Run the inference using the wrapper
synth_audio = tts_model_wrapper.generate(
text,
ref_audio_path=ref_temp_file.name,
ref_text=self.saved_voice_text
)
end_time = time.time()
print(f"Speech generation completed in {end_time - start_time:.2f} seconds")
# Process audio for better quality
synth_audio = enhance_audio(synth_audio)
# Save the synthesized audio
sf.write(output_temp_file.name, synth_audio, 24000) # IndicF5 uses 24kHz
# Add to cache
self.tts_cache[text] = output_temp_file.name
print(f"TTS output saved to {output_temp_file.name}")
return output_temp_file.name
except Exception as e:
print(f"Error generating speech: {e}")
traceback.print_exc()
return None
finally:
# We don't delete the output file as it's returned to the caller
# But clean up reference file
try:
os.unlink(ref_temp_file.name)
except Exception as e:
print(f"Error cleaning up reference file: {e}")
else:
print("No saved voice reference or TTS model not loaded")
return None
except Exception as e:
print(f"Error in TTS processing: {e}")
traceback.print_exc()
return None
def queue_tts_generation(self, text, callback=None):
"""Queue TTS generation in background thread"""
print(f"Queueing TTS generation for text: {text[:30]}...")
self.tts_queue.put((text, callback))
def generate_streamed_speech(self, text):
"""Generate speech in a streaming manner for low latency"""
if not self.saved_voice:
print("No reference voice saved")
return None
if not text or not text.strip():
print("No text provided for streaming TTS")
return None
sample_rate, audio_data = self.saved_voice
# Start streaming generation
self.streaming_tts.generate(
text=text,
ref_audio=audio_data,
ref_sr=sample_rate,
ref_text=self.saved_voice_text
)
# Return the path that will be populated
return self.streaming_tts.output_file
def update_history(self, user_input, ai_response):
"""Update conversation history"""
if user_input and user_input.strip():
self.conversation_history.append({"role": "user", "content": user_input})
if ai_response and ai_response.strip():
self.conversation_history.append({"role": "assistant", "content": ai_response})
# Limit history size
if len(self.conversation_history) > 20:
self.conversation_history = self.conversation_history[-20:]
# Initialize global conversation engine
conversation_engine = ConversationEngine()
speech_recognizer = SpeechRecognizer()
class ConversationEngine:
def __init__(self):
self.conversation_history = []
self.system_prompt = "You are a helpful assistant that speaks Malayalam fluently. Always respond in Malayalam script with proper formatting."
self.saved_voice = None
self.saved_voice_text = ""
self.tts_cache = {} # Cache for TTS outputs
# TTS background processing queue
self.tts_queue = queue.Queue()
self.tts_thread = threading.Thread(target=self.tts_worker, daemon=True)
self.tts_thread.start()
# Initialize IndicF5 TTS model if available
self.tts_model = None
self.device = None
try:
self.initialize_tts_model()
# Test the model if it was loaded successfully
if self.tts_model is not None:
print("TTS model initialized successfully")
except Exception as e:
print(f"Error initializing TTS model: {e}")
traceback.print_exc()
def initialize_tts_model(self):
"""Initialize the IndicF5 TTS model with optimizations"""
try:
# Check for HF token in environment and use it if available
hf_token = os.getenv("HF_TOKEN")
if hf_token:
print("Logging into Hugging Face with the provided token.")
login(token=hf_token)
if torch.cuda.is_available():
self.device = torch.device("cuda")
print(f"Using GPU: {torch.cuda.get_device_name(0)}")
else:
self.device = torch.device("cpu")
print("Using CPU")
# Enable performance optimizations
torch.backends.cudnn.benchmark = True
# Load TTS model and move it to the appropriate device (GPU/CPU)
print("Loading TTS model from ai4bharat/IndicF5...")
repo_id = "ai4bharat/IndicF5"
self.tts_model = AutoModel.from_pretrained(repo_id, trust_remote_code=True)
self.tts_model = self.tts_model.to(self.device)
# Set model to evaluation mode for faster inference
self.tts_model.eval()
print("TTS model loaded successfully")
except Exception as e:
print(f"Failed to load TTS model: {e}")
self.tts_model = None
traceback.print_exc()
def tts_worker(self):
"""Background worker to process TTS requests"""
while True:
try:
# Get text and callback from queue
text, callback = self.tts_queue.get()
# Generate speech
audio_path = self._generate_tts(text)
# Execute callback with result
if callback:
callback(audio_path)
# Mark task as done
self.tts_queue.task_done()
except Exception as e:
print(f"Error in TTS worker: {e}")
traceback.print_exc()
def transcribe_audio(self, audio_data, language="ml-IN"):
"""Convert audio to text using speech recognition"""
if audio_data is None:
print("No audio data received")
return "No audio detected", ""
# Make sure we have audio data in the expected format
try:
if isinstance(audio_data, tuple) and len(audio_data) == 2:
# Expected format: (sample_rate, audio_samples)
sample_rate, audio_samples = audio_data
else:
print(f"Unexpected audio format: {type(audio_data)}")
return "Invalid audio format", ""
if len(audio_samples) == 0:
print("Empty audio samples")
return "No speech detected", ""
# Save the audio temporarily
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".wav")
temp_file.close()
# Save the audio data to the temporary file
sf.write(temp_file.name, audio_samples, sample_rate)
# Use speech recognition on the file
recognizer = sr.Recognizer()
with sr.AudioFile(temp_file.name) as source:
audio = recognizer.record(source)
text = recognizer.recognize_google(audio, language=language)
print(f"Recognized: {text}")
return text, text
except sr.UnknownValueError:
print("Speech recognition could not understand audio")
return "Could not understand audio", ""
except sr.RequestError as e:
print(f"Could not request results from Google Speech Recognition service: {e}")
return f"Speech recognition service error: {str(e)}", ""
except Exception as e:
print(f"Error processing audio: {e}")
traceback.print_exc()
return f"Error processing audio: {str(e)}", ""
finally:
# Clean up temporary file
if 'temp_file' in locals() and os.path.exists(temp_file.name):
try:
os.unlink(temp_file.name)
except Exception as e:
print(f"Error deleting temporary file: {e}")
def save_reference_voice(self, audio_data, reference_text):
"""Save the reference voice for future TTS generation"""
if audio_data is None or not reference_text.strip():
return "Error: Both reference audio and text are required"
self.saved_voice = audio_data
self.saved_voice_text = reference_text.strip()
# Clear TTS cache when voice changes
self.tts_cache.clear()
# Debug info
sample_rate, audio_samples = audio_data
print(f"Saved reference voice: {len(audio_samples)} samples at {sample_rate}Hz")
print(f"Reference text: {reference_text}")
return f"Voice saved successfully! Reference text: {reference_text}"
def process_text_input(self, text):
"""Process text input from user"""
if text and text.strip():
return text, text
return "No input provided", ""
def generate_response(self, input_text):
"""Generate AI response using GPT-3.5 Turbo"""
if not input_text or not input_text.strip():
return "ഇൻപുട്ട് ലഭിച്ചില്ല. വീണ്ടും ശ്രമിക്കുക.", None # "No input received. Please try again."
try:
# Prepare conversation context from history
messages = [{"role": "system", "content": self.system_prompt}]
# Add previous conversations for context
for entry in self.conversation_history:
role = "user" if entry["role"] == "user" else "assistant"
messages.append({"role": role, "content": entry["content"]})
# Add current input
messages.append({"role": "user", "content": input_text})
# Call OpenAI API
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=messages,
max_tokens=500,
temperature=0.7
)
response_text = response.choices[0].message.content.strip()
return response_text, None
except Exception as e:
error_msg = f"എറർ: GPT മോഡലിൽ നിന്ന് ഉത്തരം ലഭിക്കുന്നതിൽ പ്രശ്നമുണ്ടായി: {str(e)}"
print(f"Error in GPT response: {e}")
traceback.print_exc()
return error_msg, None
def resample_audio(self, audio, orig_sr, target_sr):
"""Resample audio to match target sample rate only if necessary"""
if orig_sr != target_sr:
print(f"Resampling audio from {orig_sr}Hz to {target_sr}Hz")
return librosa.resample(audio, orig_sr=orig_sr, target_sr=target_sr)
return audio
def _generate_tts(self, text):
"""Internal method to generate TTS without threading"""
if not text or not text.strip():
print("No text provided for TTS generation")
return None
# Check cache first
if text in self.tts_cache:
print("Using cached TTS output")
return self.tts_cache[text]
try:
# Check if we have a saved voice and the TTS model
if self.saved_voice is not None and self.tts_model is not None:
sample_rate, audio_data = self.saved_voice
# Create a temporary file for the reference audio
ref_temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".wav")
ref_temp_file.close()
print(f"Saving reference audio to {ref_temp_file.name}")
# Save the reference audio data
sf.write(ref_temp_file.name, audio_data, sample_rate)
# Create a temporary file for the output audio
output_temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".wav")
output_temp_file.close()
try:
# Generate speech using IndicF5 - simplified approach from second file
print(f"Generating speech with IndicF5. Text: {text[:30]}...")
start_time = time.time()
# Use torch.no_grad() to save memory and computation
with torch.no_grad():
# Run the inference - directly use the model as in the second file
synth_audio = self.tts_model(
text,
ref_audio_path=ref_temp_file.name,
ref_text=self.saved_voice_text
)
end_time = time.time()
print(f"Speech generation completed in {(end_time - start_time)} seconds")
# Normalize output if needed
if synth_audio.dtype == np.int16:
synth_audio = synth_audio.astype(np.float32) / 32768.0
# Resample the generated audio to match the reference audio's sample rate
synth_audio = self.resample_audio(synth_audio, orig_sr=24000, target_sr=sample_rate)
# Save the synthesized audio
print(f"Saving synthesized audio to {output_temp_file.name}")
sf.write(output_temp_file.name, synth_audio, sample_rate)
# Cache the result
self.tts_cache[text] = output_temp_file.name
print(f"TTS generation successful, output file: {output_temp_file.name}")
return output_temp_file.name
except Exception as e:
print(f"IndicF5 TTS failed with error: {e}")
traceback.print_exc()
# Fall back to Google TTS
return self.fallback_tts(text, output_temp_file.name)
finally:
# Clean up reference audio file
if os.path.exists(ref_temp_file.name):
try:
os.unlink(ref_temp_file.name)
except Exception as e:
print(f"Error deleting temporary file: {e}")
else:
if self.saved_voice is None:
print("No saved voice available for TTS")
if self.tts_model is None:
print("TTS model not initialized")
# No saved voice or TTS model, use fallback
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".wav")
temp_file.close()
return self.fallback_tts(text, temp_file.name)
except Exception as e:
print(f"Error in TTS processing: {e}")
traceback.print_exc()
return None
def speak_with_indicf5(self, text, callback=None):
"""Queue text for TTS generation"""
if not text or not text.strip():
if callback:
callback(None)
return None
# Check cache first for immediate response
if text in self.tts_cache:
print("Using cached TTS output")
if callback:
callback(self.tts_cache[text])
return self.tts_cache[text]
# If no callback provided, generate synchronously
if callback is None:
return self._generate_tts(text)
# Otherwise, queue for async processing
self.tts_queue.put((text, callback))
return None
def fallback_tts(self, text, output_path):
"""Fallback to Google TTS if IndicF5 fails"""
try:
from gtts import gTTS
# Determine if text is Malayalam
is_malayalam = any('\u0D00' <= c <= '\u0D7F' for c in text)
lang = 'ml' if is_malayalam else 'en'
print(f"Using fallback Google TTS with language: {lang}")
tts = gTTS(text=text, lang=lang, slow=False)
tts.save(output_path)
# Cache the result
self.tts_cache[text] = output_path
print(f"Fallback TTS saved to: {output_path}")
return output_path
except Exception as e:
print(f"Fallback TTS also failed: {e}")
traceback.print_exc()
return None
def add_message(self, role, content):
"""Add a message to the conversation history"""
timestamp = datetime.now().strftime("%H:%M:%S")
self.conversation_history.append({
"role": role,
"content": content,
"timestamp": timestamp
})
def clear_conversation(self):
"""Clear the conversation history"""
self.conversation_history = []
def cleanup(self):
"""Clean up resources when shutting down"""
print("Cleaning up resources...")
# Load example Malayalam voices
def load_audio_from_url(url):
"""Load audio from a URL"""
try:
response = requests.get(url)
if response.status_code == 200:
audio_data, sample_rate = sf.read(io.BytesIO(response.content))
return sample_rate, audio_data
except Exception as e:
print(f"Error loading audio from URL: {e}")
return None, None
# Malayalam voice examples
EXAMPLE_VOICES = [
{
"name": "Aparna Voice",
"url": "https://raw.githubusercontent.com/Aparna0112/voicerecording-_TTS/main/Aparna%20Voice.wav",
"transcript": "ഞാൻ ഒരു ഫോണിന്റെ കവർ നോക്കുകയാണ്. എനിക്ക് സ്മാർട്ട് ഫോണിന് കവർ വേണം"
},
{
"name": "KC Voice",
"url": "https://raw.githubusercontent.com/Aparna0112/voicerecording-_TTS/main/KC%20Voice.wav",
"transcript": "ഹലോ ഇത് അപരനെ അല്ലേ ഞാൻ ജഗദീപ് ആണ് വിളിക്കുന്നത് ഇപ്പോൾ ഫ്രീയാണോ സംസാരിക്കാമോ"
}
]
# Preload example voices
for voice in EXAMPLE_VOICES:
sample_rate, audio_data = load_audio_from_url(voice["url"])
if sample_rate is not None:
voice["audio"] = (sample_rate, audio_data)
print(f"Loaded example voice: {voice['name']}")
else:
print(f"Failed to load voice: {voice['name']}")
def create_chatbot_interface():
"""Create a single-page chatbot interface with voice input, output, and voice selection"""
# Initialize conversation engine
engine = ConversationEngine()
# CSS for styling the chat interface
css = """
.chatbot-container {
display: flex;
flex-direction: column;
height: 100%;
max-width: 800px;
margin: 0 auto;
}
.chat-window {
flex-grow: 1;
overflow-y: auto;
padding: 1rem;
background: #f5f7f9;
border-radius: 0.5rem;
margin-bottom: 1rem;
min-height: 400px;
}
.input-area {
display: flex;
gap: 0.5rem;
padding: 0.5rem;
align-items: center;
}
.message {
margin-bottom: 1rem;
padding: 0.8rem;
border-radius: 0.5rem;
position: relative;
max-width: 80%;
}
.user-message {
background: #e1f5fe;
align-self: flex-end;
margin-left: auto;
}
.bot-message {
background: #f0f0f0;
align-self: flex-start;
}
.timestamp {
font-size: 0.7rem;
color: #888;
margin-top: 0.2rem;
text-align: right;
}
.chatbot-header {
text-align: center;
color: #333;
margin-bottom: 1rem;
}
.chat-controls {
display: flex;
justify-content: space-between;
margin-bottom: 0.5rem;
}
.voice-selector {
background: #f8f9fa;
padding: 1rem;
border-radius: 0.5rem;
margin-bottom: 1rem;
}
.progress-bar {
height: 4px;
background-color: #e0e0e0;
position: relative;
margin: 10px 0;
border-radius: 2px;
}
.progress-bar-fill {
height: 100%;
background-color: #4CAF50;
border-radius: 2px;
transition: width 0.3s ease-in-out;
}
"""
with gr.Blocks(css=css, title="Malayalam Voice Chatbot") as interface:
gr.Markdown("# 🤖 Malayalam Voice Chatbot with Voice Selection", elem_classes=["chatbot-header"])
# Create a state variable for TTS progress
tts_progress_state = gr.State(0)
audio_output_state = gr.State(None)
with gr.Row(elem_classes=["chatbot-container"]):
with gr.Column():
# Voice selection section - fixed to use Accordion instead of Box
with gr.Accordion("🎤 Voice Selection", open=True):
# Select from example voices or record your own
voice_selector = gr.Dropdown(
choices=[voice["name"] for voice in EXAMPLE_VOICES],
value=EXAMPLE_VOICES[0]["name"] if EXAMPLE_VOICES else None,
label="Select Voice Example"
)
# Display selected voice info
voice_info = gr.Textbox(
value=EXAMPLE_VOICES[0]["transcript"] if EXAMPLE_VOICES else "",
label="Voice Sample Transcript",
lines=2,
interactive=True
)
# Play selected example voice
example_audio = gr.Audio(
value=None,
label="Example Voice",
interactive=False
)
# Or record your own voice
gr.Markdown("### OR Record Your Own Voice")
custom_voice = gr.Audio(
sources=["microphone", "upload"],
type="numpy",
label="Record/Upload Your Voice"
)
custom_transcript = gr.Textbox(
value="",
label="Your Voice Transcript (what you said in Malayalam)",
lines=2
)
# Button to save the selected/recorded voice
save_voice_btn = gr.Button("💾 Save Voice for Chat", variant="primary")
voice_status = gr.Textbox(label="Voice Status", value="No voice saved yet")
# Language selector and controls for chat
with gr.Row(elem_classes=["chat-controls"]):
language_selector = gr.Dropdown(
choices=["ml-IN", "en-US", "hi-IN", "ta-IN", "te-IN", "kn-IN"],
value="ml-IN",
label="Speech Recognition Language"
)
clear_btn = gr.Button("🧹 Clear Chat", scale=0)
# Chat display area
chatbot = gr.Chatbot(
[],
elem_id="chatbox",
bubble_full_width=False,
height=450,
elem_classes=["chat-window"]
)
# Progress bar for TTS generation
with gr.Row():
tts_progress = gr.Slider(
minimum=0,
maximum=100,
value=0,
label="TTS Progress",
interactive=False
)
# Audio output for the bot's response
audio_output = gr.Audio(
label="Bot's Voice Response",
type="filepath",
autoplay=True,
visible=True
)
# Status message for debugging
status_msg = gr.Textbox(
label="Status",
value="Ready",
interactive=False
)
# Input area with separate components
with gr.Row(elem_classes=["input-area"]):
audio_msg = gr.Textbox(
label="Message",
placeholder="Type a message or record audio",
lines=1
)
audio_input = gr.Audio(
sources=["microphone"],
type="numpy",
label="Record",
elem_classes=["audio-input"]
)
submit_btn = gr.Button("🚀 Send", variant="primary")
# Function to update voice example info
def update_voice_example(voice_name):
for voice in EXAMPLE_VOICES:
if voice["name"] == voice_name and "audio" in voice:
return voice["transcript"], voice["audio"]
return "", None
# Function to save voice for TTS
def save_voice_for_tts(example_name, example_audio, custom_audio, example_transcript, custom_transcript):
try:
# Check if we're using an example voice or custom recorded voice
if custom_audio is not None:
# Use custom recorded voice
if not custom_transcript.strip():
return "Error: Please provide a transcript for your recorded voice"
voice_audio = custom_audio
transcript = custom_transcript
source = "custom recording"
elif example_audio is not None:
# Use selected example voice
voice_audio = example_audio
transcript = example_transcript
source = f"example: {example_name}"
else:
return "Error: No voice selected or recorded"
# Save the voice in the engine
result = engine.save_reference_voice(voice_audio, transcript)
return f"Voice saved successfully! Using {source}"
except Exception as e:
print(f"Error saving voice: {e}")
traceback.print_exc()
return f"Error saving voice: {str(e)}"
# Function to update TTS progress
def update_tts_progress(progress):
return progress
# Audio generated callback
def on_tts_generated(audio_path):
print(f"TTS generation callback received path: {audio_path}")
return audio_path, 100, "Response ready" # audio path, 100% progress, status message
# Function to process user input and generate response
def process_input(audio, text_input, history, language, progress):
try:
# Update status
status = "Processing input..."
# Reset progress bar
progress = 0
# Check which input mode we're using
if audio is not None:
# Audio input
transcribed_text, input_text = engine.transcribe_audio(audio, language)
if not input_text:
status = "Could not understand audio. Please try again."
return history, None, status, text_input, progress
elif text_input and text_input.strip():
# Text input
input_text = text_input.strip()
transcribed_text = input_text
else:
# No valid input
status = "No input detected. Please speak or type a message."
return history, None, status, text_input, progress
# Add user message to conversation history
engine.add_message("user", input_text)
# Update the Gradio chatbot display immediately with user message
updated_history = history + [[transcribed_text, None]]
# Update status and progress
status = "Generating response..."
progress = 30
# Generate response
response_text, _ = engine.generate_response(input_text)
# Add assistant response to conversation history
engine.add_message("assistant", response_text)
# Update the Gradio chatbot with the assistant's response
updated_history = history + [[transcribed_text, response_text]]
# Update status and progress
status = "Generating speech..."
progress = 60
# Generate speech for response synchronously (for better debugging)
audio_path = engine._generate_tts(response_text)
if audio_path:
status = f"Response ready: {audio_path}"
progress = 100
print(f"Audio generated successfully: {audio_path}")
else:
status = "Failed to generate speech"
# Clear the text input
return updated_history, audio_path, status, "", progress
except Exception as e:
# Catch any unexpected errors
error_message = f"Error: {str(e)}"
print(error_message)
traceback.print_exc()
return history, None, error_message, text_input, progress
# Function to clear chat history
def clear_chat():
engine.clear_conversation()
return [], None, "Chat history cleared", "", 0
# Connect event handlers
# Voice selection handlers
voice_selector.change(
update_voice_example,
inputs=[voice_selector],
outputs=[voice_info, example_audio]
)
# Save voice button handler
save_voice_btn.click(
save_voice_for_tts,
inputs=[voice_selector, example_audio, custom_voice, voice_info, custom_transcript],
outputs=[voice_status]
)
# Chat handlers
submit_btn.click(
process_input,
inputs=[audio_input, audio_msg, chatbot, language_selector, tts_progress_state],
outputs=[chatbot, audio_output, status_msg, audio_msg, tts_progress]
)
# Allow sending by pressing Enter key in the text input
audio_msg.submit(
process_input,
inputs=[audio_input, audio_msg, chatbot, language_selector, tts_progress_state],
outputs=[chatbot, audio_output, status_msg, audio_msg, tts_progress]
)
# Clear button handler
clear_btn.click(
clear_chat,
inputs=[],
outputs=[chatbot, audio_output, status_msg, audio_msg, tts_progress]
)
# Setup cleanup on exit
def exit_handler():
engine.cleanup()
import atexit
atexit.register(exit_handler)
# Enable queueing for better responsiveness
interface.queue()
return interface
# Start the interface
if __name__ == "__main__":
print("Starting Malayalam Voice Chatbot with IndicF5 Voice Selection...")
interface = create_chatbot_interface()
interface.launch(debug=True) # Enable debug mode to see errors in the console |