chaitravi commited on
Commit
5199940
·
verified ·
1 Parent(s): 77e2eed

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -7
app.py CHANGED
@@ -13,7 +13,7 @@ else:
13
  raise ValueError("HUGGINGFACE_TOKEN environment variable not set.")
14
 
15
  # Load the trained model and tokenizer
16
- model_name = "chaitravi/hate-speech-classifier" # Replace with your actual Hugging Face model repo
17
  model = AutoModelForSequenceClassification.from_pretrained(model_name)
18
  tokenizer = AutoTokenizer.from_pretrained(model_name)
19
  device = "cuda" if torch.cuda.is_available() else "cpu"
@@ -43,28 +43,31 @@ def classify_message(message):
43
  return "Hate speech/Offensive" if prediction == 1 else "Not hate speech/Offensive"
44
 
45
  # Chat simulation function
46
- def chat_interface(history, _):
 
 
 
47
  username = random.choice(usernames)
48
  new_message = random.choice(game_responses)
49
  classification = classify_message(new_message)
50
  blurred_message = "****" if classification == "Hate speech/Offensive" else new_message
51
- history.append((f"{username}: {new_message}", f"{username}: {blurred_message}"))
52
 
53
  # Generate automated game response
54
  bot_username = "GameMaster"
55
  bot_response = random.choice(game_responses)
56
- history.append((f"{bot_username}: {bot_response}", f"{bot_username}: {bot_response}"))
57
 
58
- return history, history
59
 
60
  # Create Gradio interface
61
  def main():
62
  with gr.Blocks() as app:
63
  gr.Markdown("# Game Chat Hate Speech Detection Simulator")
64
- chatbot = gr.Chatbot()
65
  submit = gr.Button("Generate Message")
66
 
67
- submit.click(chat_interface, inputs=[chatbot, None], outputs=[chatbot, chatbot])
68
 
69
  app.launch()
70
 
 
13
  raise ValueError("HUGGINGFACE_TOKEN environment variable not set.")
14
 
15
  # Load the trained model and tokenizer
16
+ model_name = "your-username/hate-speech-classifier" # Replace with your actual Hugging Face model repo
17
  model = AutoModelForSequenceClassification.from_pretrained(model_name)
18
  tokenizer = AutoTokenizer.from_pretrained(model_name)
19
  device = "cuda" if torch.cuda.is_available() else "cpu"
 
43
  return "Hate speech/Offensive" if prediction == 1 else "Not hate speech/Offensive"
44
 
45
  # Chat simulation function
46
+ def chat_interface(history):
47
+ if history is None:
48
+ history = []
49
+
50
  username = random.choice(usernames)
51
  new_message = random.choice(game_responses)
52
  classification = classify_message(new_message)
53
  blurred_message = "****" if classification == "Hate speech/Offensive" else new_message
54
+ history.append({"role": "user", "content": f"{username}: {blurred_message}"})
55
 
56
  # Generate automated game response
57
  bot_username = "GameMaster"
58
  bot_response = random.choice(game_responses)
59
+ history.append({"role": "assistant", "content": f"{bot_username}: {bot_response}"})
60
 
61
+ return history
62
 
63
  # Create Gradio interface
64
  def main():
65
  with gr.Blocks() as app:
66
  gr.Markdown("# Game Chat Hate Speech Detection Simulator")
67
+ chatbot = gr.Chatbot(type="messages")
68
  submit = gr.Button("Generate Message")
69
 
70
+ submit.click(chat_interface, inputs=[chatbot], outputs=[chatbot])
71
 
72
  app.launch()
73