File size: 11,064 Bytes
83dd2a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39c8302
83dd2a8
975d352
870c253
 
71bdcfa
 
 
bb9f60a
 
83dd2a8
 
 
 
 
 
 
 
 
29f09ab
 
 
 
 
 
 
 
 
 
 
83dd2a8
29f09ab
83dd2a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c81f89
 
83dd2a8
 
8c81f89
68c2783
 
8c81f89
 
 
 
83dd2a8
 
210b4bb
 
 
195deb3
210b4bb
 
 
 
 
 
195deb3
66ff8f7
 
210b4bb
66ff8f7
210b4bb
 
 
66ff8f7
83dd2a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c81f89
 
 
 
 
195deb3
 
 
 
 
 
 
83dd2a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebfa5b6
 
 
 
 
 
 
 
 
 
83dd2a8
 
 
 
 
 
 
 
 
 
39c8302
 
 
 
 
83dd2a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
195deb3
 
7a3eff7
 
 
 
 
 
 
 
210b4bb
 
 
 
 
 
7a3eff7
 
195deb3
210b4bb
 
 
 
e1fbe20
83dd2a8
 
 
 
870c253
 
 
 
71bdcfa
870c253
71bdcfa
870c253
 
71bdcfa
 
 
870c253
 
 
 
71bdcfa
870c253
 
71bdcfa
870c253
71bdcfa
870c253
71bdcfa
 
 
 
 
 
 
 
 
 
 
 
 
9e80388
 
 
 
 
 
 
71bdcfa
 
870c253
 
e8dbc8c
bb9f60a
 
 
 
 
 
 
 
b602ff4
83dd2a8
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
import streamlit as st
import torch
from transformers import LayoutLMv3Processor, LayoutLMv3ForTokenClassification
from PIL import Image
import io
import json
import pandas as pd
import plotly.express as px
import numpy as np
from typing import Dict, Any
import logging
import pytesseract
import re
from openai import OpenAI
import os
from pdf2image import convert_from_bytes
from dotenv import load_dotenv
from chatbot_utils import ask_receipt_chatbot
import time
from tensorboard.backend.event_processing import event_accumulator
from torch.utils.tensorboard import SummaryWriter
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
import matplotlib
matplotlib.use('Agg')

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Load environment variables
load_dotenv()

# Initialize OpenAI client for Perplexity
api_key = os.getenv('PERPLEXITY_API_KEY')
if not api_key:
    st.error("""
    ⚠️ Perplexity API key not found! Please add your API key to the Space's secrets:
    1. Go to Space Settings
    2. Click on 'Repository secrets'
    3. Add a new secret with name 'PERPLEXITY_API_KEY'
    4. Add your Perplexity API key as the value
    """)
    st.stop()

client = OpenAI(
    api_key=api_key,
    base_url="https://api.perplexity.ai"
)

# Initialize LayoutLM model
@st.cache_resource
def load_model():
    model_name = "microsoft/layoutlmv3-base"
    processor = LayoutLMv3Processor.from_pretrained(model_name)
    model = LayoutLMv3ForTokenClassification.from_pretrained(model_name)
    return processor, model

def extract_json_from_llm_output(llm_result):
    match = re.search(r'\{.*\}', llm_result, re.DOTALL)
    if match:
        return match.group(0)
    return None

def extract_fields(image_path):
    text = pytesseract.image_to_string(Image.open(image_path))
    st.subheader("Raw OCR Output")
    st.code(text)

    # Improved Regex patterns for fields
    patterns = {
        "name": r"Mrs\s+\w+\s+\w+",
        "date": r"Date[:\s]+([\d/]+)",
        "product": r"\d+\s+\w+.*Style\s+\d+",
        "amount_paid": r"Total Paid\s+\$?([\d.,]+)",
        "receipt_no": r"Receipt No\.?\s*:?\s*(\d+)"
    }

    results = {}
    for field, pattern in patterns.items():
        match = re.search(pattern, text, re.IGNORECASE)
        if match:
            results[field] = match.group(1) if match.groups() else match.group(0)
        else:
            results[field] = None

    # Extract all products
    results["products"] = extract_products(text)
    return results

def extract_products(text):
    # This pattern matches lines like: "1076903 PISTACHIO 14.49"
    product_pattern = r"\d{6,} ([A-Z0-9 ]+) (\d+\.\d{2})"
    matches = re.findall(product_pattern, text)
    products = [{"name": name.strip(), "price": float(price)} for name, price in matches]
    return products

def extract_with_perplexity_llm(ocr_text):
    prompt = f"""
You are an expert at extracting structured data from receipts.

From the following OCR text, extract these fields and return them as a flat JSON object with exactly these keys:
- name (customer name)
- date (date of purchase)
- amount_paid (total amount paid, or price if only one product)
- receipt_no (receipt number)
- product (the main product name, as a string; if multiple products, pick the most expensive or the only one)

**Note:** If the receipt has only one product, set 'product' to its name and 'amount_paid' to its price. If there is a 'price' and an 'amount paid', treat them as the same if they are equal.

Example output:
{{
  "name": "Mrs. Genevieve Lopez",
  "date": "12/13/2024",
  "amount_paid": 579.18,
  "receipt_no": "042085",
  "product": "Wireless Airpods"
}}

Text:
\"\"\"{ocr_text}\"\"\"
"""
    messages = [
        {
            "role": "system",
            "content": "You are an AI assistant that extracts structured information from text."
        },
        {
            "role": "user",
            "content": prompt
        }
    ]
    
    response = client.chat.completions.create(
        model="sonar-pro",
        messages=messages
    )
    return response.choices[0].message.content

def save_to_dynamodb(data, table_name="Receipts"):
    # ... existing code ...
    # data["products"] is a list of dicts
    table.put_item(Item=data)

def merge_extractions(regex_fields, llm_fields):
    merged = {}
    for key in ["name", "date", "amount_paid", "receipt_no"]:
        merged[key] = llm_fields.get(key) or regex_fields.get(key)
    merged["products"] = llm_fields.get("products") or regex_fields.get("products")
    return merged

def main():
    st.set_page_config(
        page_title="FormIQ - Intelligent Document Parser",
        page_icon="πŸ“„",
        layout="wide"
    )
    
    st.title("FormIQ: Intelligent Document Parser")
    st.markdown("""
    Upload your documents to extract and validate information using advanced AI models.
    """)
    
    # Sidebar
    with st.sidebar:
        st.header("Settings")
        document_type = st.selectbox(
            "Document Type",
            options=["invoice", "receipt", "form"],
            index=0
        )
        
        confidence_threshold = st.slider(
            "Confidence Threshold",
            min_value=0.0,
            max_value=1.0,
            value=0.5,
            step=0.05
        )
        
        st.markdown("---")
        st.markdown("### About")
        st.markdown("""
        FormIQ uses LayoutLMv3 and Perplexity AI to extract and validate information from documents.
        """)

        # Receipt Chatbot in sidebar
        st.markdown("---")
        st.header("πŸ’¬ Receipt Chatbot")
        st.write("Ask questions about your receipts stored in DynamoDB.")
        user_question = st.text_input("Enter your question:", "What is the total amount paid?")
        if st.button("Ask Chatbot", key="sidebar_chatbot"):
            with st.spinner("Getting answer from Perplexity LLM..."):
                answer = ask_receipt_chatbot(user_question)
                st.success(answer)
    
    # Main content
    uploaded_file = st.file_uploader(
        "Upload Document",
        type=["png", "jpg", "jpeg", "pdf"],
        help="Upload a document image to process"
    )
    
    if uploaded_file is not None:
        # Display uploaded image
        if uploaded_file.type == "application/pdf":
            images = convert_from_bytes(uploaded_file.read())
            image = images[0]  # Use the first page
        else:
            image = Image.open(uploaded_file)
        st.image(image, caption="Uploaded Document", width=600)

        # Process button
        if st.button("Process Document"):
            with st.spinner("Processing document..."):
                try:
                    # Save the uploaded file to a temporary location
                    temp_path = "temp_uploaded_image.jpg"
                    image.save(temp_path)

                    # Extract fields using OCR + regex
                    fields = extract_fields(temp_path)

                    # Extract with Perplexity LLM
                    with st.spinner("Extracting structured data with Perplexity LLM..."):
                        llm_result = extract_with_perplexity_llm(pytesseract.image_to_string(Image.open(temp_path)))
                        st.subheader("Structured Data (Perplexity LLM)")
                        st.json(llm_result)

                    # Try to parse the JSON from the LLM output
                    llm_data = {}
                    try:
                        llm_json = extract_json_from_llm_output(llm_result)
                        if llm_json:
                            llm_data = json.loads(llm_json)
                            # Save to DynamoDB
                            try:
                                save_to_dynamodb(llm_data)
                                st.success("Saved to DynamoDB!")
                            except Exception as e:
                                st.error(f"Failed to save to DynamoDB: {e}")
                    except Exception as e:
                        st.error(f"Failed to parse LLM output as JSON: {e}")

                    # Display extracted products if present
                    if "products" in llm_data and llm_data["products"]:
                        st.subheader("Products (LLM Extracted)")
                        st.dataframe(pd.DataFrame(llm_data["products"]))

                except Exception as e:
                    logger.error(f"Error processing document: {str(e)}")
                    st.error(f"Error processing document: {str(e)}")

    st.header("Model Training & Evaluation Demo")

    if st.button("Start Training"):
        epochs = 10
        num_classes = 3  # Example: 3 classes for confusion matrix
        losses = []
        val_losses = []
        accuracies = []
        progress = st.progress(0)
        chart = st.line_chart({"Loss": [], "Val Loss": [], "Accuracy": []})

        writer = SummaryWriter("logs")

        for epoch in range(epochs):
            # Simulate training
            loss = np.exp(-epoch/5) + np.random.rand() * 0.05
            val_loss = loss + np.random.rand() * 0.02
            acc = 1 - loss + np.random.rand() * 0.02
            losses.append(loss)
            val_losses.append(val_loss)
            accuracies.append(acc)
            chart.add_rows({"Loss": [loss], "Val Loss": [val_loss], "Accuracy": [acc]})
            progress.progress((epoch+1)/epochs)
            st.write(f"Epoch {epoch+1}: Loss={loss:.4f}, Val Loss={val_loss:.4f}, Accuracy={acc:.4f}")

            # Log to TensorBoard
            writer.add_scalar("loss", loss, epoch)
            writer.add_scalar("val_loss", val_loss, epoch)
            writer.add_scalar("accuracy", acc, epoch)

            # Simulate predictions and labels for confusion matrix
            y_true = np.random.randint(0, num_classes, 100)
            y_pred = y_true.copy()
            y_pred[np.random.choice(100, 10, replace=False)] = np.random.randint(0, num_classes, 10)
            cm = confusion_matrix(y_true, y_pred, labels=range(num_classes))

            # Only log confusion matrix in the last epoch
            if epoch == epochs - 1:
                fig, ax = plt.subplots()
                disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=[f"Class {i}" for i in range(num_classes)])
                disp.plot(ax=ax)
                plt.close(fig)
                writer.add_figure("confusion_matrix", fig, epoch)

        writer.close()
        st.success("Training complete!")

        # Show last confusion matrix in Streamlit
        if 'cm' in locals():
            st.subheader("Confusion Matrix (Last Epoch)")
            fig, ax = plt.subplots()
            disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=[f"Class {i}" for i in range(num_classes)])
            disp.plot(ax=ax)
            st.pyplot(fig)
        else:
            st.info("Confusion matrix not found.")

if __name__ == "__main__":
    main()