File size: 9,420 Bytes
83dd2a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
975d352
870c253
 
71bdcfa
 
 
83dd2a8
 
 
 
 
 
 
 
 
29f09ab
 
 
 
 
 
 
 
 
 
 
83dd2a8
29f09ab
83dd2a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
975d352
 
 
 
 
 
 
 
 
870c253
 
 
 
71bdcfa
870c253
71bdcfa
870c253
 
71bdcfa
 
 
870c253
 
 
 
71bdcfa
870c253
 
71bdcfa
870c253
71bdcfa
870c253
71bdcfa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
870c253
 
71bdcfa
870c253
71bdcfa
870c253
71bdcfa
 
 
 
 
 
261a578
71bdcfa
261a578
 
 
71bdcfa
 
 
 
 
 
 
 
 
 
261a578
 
870c253
83dd2a8
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
import streamlit as st
import torch
from transformers import LayoutLMv3Processor, LayoutLMv3ForTokenClassification
from PIL import Image
import io
import json
import pandas as pd
import plotly.express as px
import numpy as np
from typing import Dict, Any
import logging
import pytesseract
import re
from openai import OpenAI
import os
from dotenv import load_dotenv
from chatbot_utils import ask_receipt_chatbot
import time
from tensorboard.backend.event_processing import event_accumulator
from torch.utils.tensorboard import SummaryWriter
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Load environment variables
load_dotenv()

# Initialize OpenAI client for Perplexity
api_key = os.getenv('PERPLEXITY_API_KEY')
if not api_key:
    st.error("""
    ⚠️ Perplexity API key not found! Please add your API key to the Space's secrets:
    1. Go to Space Settings
    2. Click on 'Repository secrets'
    3. Add a new secret with name 'PERPLEXITY_API_KEY'
    4. Add your Perplexity API key as the value
    """)
    st.stop()

client = OpenAI(
    api_key=api_key,
    base_url="https://api.perplexity.ai"
)

# Initialize LayoutLM model
@st.cache_resource
def load_model():
    model_name = "microsoft/layoutlmv3-base"
    processor = LayoutLMv3Processor.from_pretrained(model_name)
    model = LayoutLMv3ForTokenClassification.from_pretrained(model_name)
    return processor, model

def extract_json_from_llm_output(llm_result):
    match = re.search(r'\{.*\}', llm_result, re.DOTALL)
    if match:
        return match.group(0)
    return None

def extract_fields(image_path):
    # OCR
    text = pytesseract.image_to_string(Image.open(image_path))
    
    # Display OCR output for debugging
    st.subheader("Raw OCR Output")
    st.code(text)

    # Improved Regex patterns for fields
    patterns = {
        "name": r"Mrs\s+\w+\s+\w+",
        "date": r"Date[:\s]+([\d/]+)",
        "product": r"\d+\s+\w+.*Style\s+\d+",
        "amount_paid": r"Total Paid\s+\$?([\d.,]+)",
        "receipt_no": r"Receipt No\.?\s*:?\s*(\d+)"
    }

    results = {}
    for field, pattern in patterns.items():
        match = re.search(pattern, text, re.IGNORECASE)
        if match:
            results[field] = match.group(1) if match.groups() else match.group(0)
        else:
            results[field] = None

    return results

def extract_with_perplexity_llm(ocr_text):
    prompt = f"""
Extract the following fields from this receipt text:
- name
- date
- product
- amount_paid
- receipt_no

Text:
\"\"\"{ocr_text}\"\"\"

Return the result as a JSON object with those fields.
"""
    messages = [
        {
            "role": "system",
            "content": "You are an AI assistant that extracts structured information from text."
        },
        {
            "role": "user",
            "content": prompt
        }
    ]
    
    response = client.chat.completions.create(
        model="sonar-pro",
        messages=messages
    )
    return response.choices[0].message.content

def main():
    st.set_page_config(
        page_title="FormIQ - Intelligent Document Parser",
        page_icon="πŸ“„",
        layout="wide"
    )
    
    st.title("FormIQ: Intelligent Document Parser")
    st.markdown("""
    Upload your documents to extract and validate information using advanced AI models.
    """)
    
    # Sidebar
    with st.sidebar:
        st.header("Settings")
        document_type = st.selectbox(
            "Document Type",
            options=["invoice", "receipt", "form"],
            index=0
        )
        
        confidence_threshold = st.slider(
            "Confidence Threshold",
            min_value=0.0,
            max_value=1.0,
            value=0.5,
            step=0.05
        )
        
        st.markdown("---")
        st.markdown("### About")
        st.markdown("""
        FormIQ uses LayoutLMv3 and Perplexity AI to extract and validate information from documents.
        """)
    
    # Main content
    uploaded_file = st.file_uploader(
        "Upload Document",
        type=["png", "jpg", "jpeg", "pdf"],
        help="Upload a document image to process"
    )
    
    if uploaded_file is not None:
        # Display uploaded image
        image = Image.open(uploaded_file)
        st.image(image, caption="Uploaded Document", width=600)

        # Process button
        if st.button("Process Document"):
            with st.spinner("Processing document..."):
                try:
                    # Save the uploaded file to a temporary location
                    temp_path = "temp_uploaded_image.jpg"
                    image.save(temp_path)

                    # Extract fields using OCR + regex
                    fields = extract_fields(temp_path)

                    # Extract with Perplexity LLM
                    with st.spinner("Extracting structured data with Perplexity LLM..."):
                        try:
                            llm_result = extract_with_perplexity_llm(pytesseract.image_to_string(Image.open(temp_path)))
                            st.subheader("Structured Data (Perplexity LLM)")
                            st.code(llm_result, language="json")

                            # Display extracted fields
                            st.subheader("Extracted Fields")
                            fields_df = pd.DataFrame([fields])
                            st.dataframe(fields_df)

                        except Exception as e:
                            st.error(f"LLM extraction failed: {e}")

                except Exception as e:
                    logger.error(f"Error processing document: {str(e)}")
                    st.error(f"Error processing document: {str(e)}")

    st.markdown("---")
    st.header("πŸ’¬ Receipt Chatbot")
    st.write("Ask questions about your receipts stored in DynamoDB.")
    user_question = st.text_input("Enter your question:", "What is the total amount paid?")
    if st.button("Ask Chatbot"):
        with st.spinner("Getting answer from Perplexity LLM..."):
            answer = ask_receipt_chatbot(user_question)
            st.success(answer)

    st.header("Model Training & Evaluation Demo")

    if st.button("Start Training"):
        epochs = 10
        num_classes = 3  # Example: 3 classes for confusion matrix
        losses = []
        val_losses = []
        accuracies = []
        progress = st.progress(0)
        chart = st.line_chart({"Loss": [], "Val Loss": [], "Accuracy": []})

        writer = SummaryWriter("logs")

        for epoch in range(epochs):
            # Simulate training
            loss = np.exp(-epoch/5) + np.random.rand() * 0.05
            val_loss = loss + np.random.rand() * 0.02
            acc = 1 - loss + np.random.rand() * 0.02
            losses.append(loss)
            val_losses.append(val_loss)
            accuracies.append(acc)
            chart.add_rows({"Loss": [loss], "Val Loss": [val_loss], "Accuracy": [acc]})
            progress.progress((epoch+1)/epochs)
            st.write(f"Epoch {epoch+1}: Loss={loss:.4f}, Val Loss={val_loss:.4f}, Accuracy={acc:.4f}")

            # Log to TensorBoard
            writer.add_scalar("loss", loss, epoch)
            writer.add_scalar("val_loss", val_loss, epoch)
            writer.add_scalar("accuracy", acc, epoch)

            # Simulate predictions and labels for confusion matrix
            y_true = np.random.randint(0, num_classes, 100)
            y_pred = y_true.copy()
            # Add some noise to predictions
            y_pred[np.random.choice(100, 10, replace=False)] = np.random.randint(0, num_classes, 10)
            cm = confusion_matrix(y_true, y_pred, labels=range(num_classes))

            # Plot and log confusion matrix as image
            fig, ax = plt.subplots()
            disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=[f"Class {i}" for i in range(num_classes)])
            disp.plot(ax=ax)
            plt.close(fig)
            writer.add_figure("confusion_matrix", fig, epoch)

            time.sleep(0.5)

        writer.close()
        st.success("Training complete!")
        st.line_chart({"Loss": losses, "Val Loss": val_losses, "Accuracy": accuracies})

        # Show last confusion matrix in Streamlit
        st.subheader("Confusion Matrix (Last Epoch)")
        fig, ax = plt.subplots()
        disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=[f"Class {i}" for i in range(num_classes)])
        disp.plot(ax=ax)
        st.pyplot(fig)

    logdir = "logs"
    if os.path.exists(logdir) and os.listdir(logdir):
        ea = event_accumulator.EventAccumulator(logdir)
        ea.Reload()
        scalars = ea.Tags()['scalars']
        for tag in ['loss', 'val_loss', 'accuracy']:
            if tag in scalars:
                values = [s.value for s in ea.Scalars(tag)]
                st.line_chart({tag: values})
        # Show confusion matrix images if available
        if 'confusion_matrix' in ea.Tags()['images']:
            st.subheader("TensorBoard Confusion Matrices")
            for img in ea.Images('confusion_matrix'):
                st.image(img.encoded_image_string)
    else:
        st.info("No TensorBoard logs found. Please upload logs to the 'logs' directory.")

if __name__ == "__main__":
    main()