File size: 12,981 Bytes
83dd2a8
 
f825473
83dd2a8
 
 
 
 
 
 
 
 
 
 
 
39c8302
83dd2a8
975d352
870c253
 
71bdcfa
 
 
bb9f60a
f825473
 
 
7d7f295
83dd2a8
 
 
 
 
 
 
 
 
29f09ab
 
 
 
 
 
 
 
 
 
 
83dd2a8
29f09ab
83dd2a8
 
 
 
 
 
 
 
 
 
 
 
5f25ca2
 
 
 
 
 
83dd2a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c81f89
 
83dd2a8
 
8c81f89
f825473
 
 
8c81f89
f825473
 
 
 
 
 
 
 
 
 
 
 
8c81f89
 
83dd2a8
 
210b4bb
 
f825473
195deb3
210b4bb
f825473
210b4bb
f825473
195deb3
66ff8f7
 
210b4bb
66ff8f7
f825473
210b4bb
f825473
 
 
 
66ff8f7
83dd2a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f825473
 
 
 
 
 
 
 
 
 
8c81f89
f825473
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c81f89
 
195deb3
 
 
 
 
 
 
7d7f295
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83dd2a8
 
11bdeb7
83dd2a8
 
 
 
11bdeb7
83dd2a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebfa5b6
 
 
 
 
 
 
 
 
 
83dd2a8
 
 
 
 
 
 
 
 
7d7f295
83dd2a8
 
7d7f295
 
 
 
 
 
 
 
83dd2a8
 
 
 
 
 
 
7d7f295
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1fbe20
83dd2a8
 
 
 
870c253
 
 
 
71bdcfa
870c253
71bdcfa
870c253
 
71bdcfa
 
 
870c253
 
 
 
71bdcfa
870c253
 
71bdcfa
870c253
71bdcfa
870c253
71bdcfa
 
 
 
 
 
 
 
 
 
 
 
 
9e80388
 
 
 
 
 
 
71bdcfa
 
870c253
 
e8dbc8c
bb9f60a
 
 
 
 
 
 
 
b602ff4
83dd2a8
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
import streamlit as st
import torch
from transformers import LayoutLMv3Processor, LayoutLMv3ForTokenClassification, TrOCRProcessor, VisionEncoderDecoderModel
from PIL import Image
import io
import json
import pandas as pd
import plotly.express as px
import numpy as np
from typing import Dict, Any
import logging
import pytesseract
import re
from openai import OpenAI
import os
from pdf2image import convert_from_bytes
from dotenv import load_dotenv
from chatbot_utils import ask_receipt_chatbot
import time
from tensorboard.backend.event_processing import event_accumulator
from torch.utils.tensorboard import SummaryWriter
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
import matplotlib
import boto3
from decimal import Decimal
import uuid
from paddleocr import PaddleOCR

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Load environment variables
load_dotenv()

# Initialize OpenAI client for Perplexity
api_key = os.getenv('PERPLEXITY_API_KEY')
if not api_key:
    st.error("""
    ⚠️ Perplexity API key not found! Please add your API key to the Space's secrets:
    1. Go to Space Settings
    2. Click on 'Repository secrets'
    3. Add a new secret with name 'PERPLEXITY_API_KEY'
    4. Add your Perplexity API key as the value
    """)
    st.stop()

client = OpenAI(
    api_key=api_key,
    base_url="https://api.perplexity.ai"
)

# Initialize LayoutLM model
@st.cache_resource
def load_model():
    model_name = "microsoft/layoutlmv3-base"
    processor = LayoutLMv3Processor.from_pretrained(model_name)
    model = LayoutLMv3ForTokenClassification.from_pretrained(model_name)
    return processor, model

def extract_json_from_llm_output(llm_result):
    # Try to extract JSON from a code block first (```json ... ``` or ``` ... ```)
    code_block_match = re.search(r"```(?:json)?\s*({[\s\S]*?})\s*```", llm_result, re.IGNORECASE)
    if code_block_match:
        return code_block_match.group(1)
    # Fallback: extract first {...} block
    match = re.search(r'\{[\s\S]*\}', llm_result)
    if match:
        return match.group(0)
    return None

def extract_fields(image_path):
    text = pytesseract.image_to_string(Image.open(image_path))
    st.subheader("Raw OCR Output")
    st.code(text)

    # Improved Regex patterns for fields
    patterns = {
        "name": r"Mrs\s+\w+\s+\w+",
        "date": r"Date[:\s]+([\d/]+)",
        "product": r"\d+\s+\w+.*Style\s+\d+",
        "amount_paid": r"Total Paid\s+\$?([\d.,]+)",
        "receipt_no": r"Receipt No\.?\s*:?\s*(\d+)"
    }

    results = {}
    for field, pattern in patterns.items():
        match = re.search(pattern, text, re.IGNORECASE)
        if match:
            results[field] = match.group(1) if match.groups() else match.group(0)
        else:
            results[field] = None

    # Extract all products
    results["products"] = extract_products(text)
    return results

def extract_products(text):
    # Pattern to match product lines with quantity, name, and price
    # Example: "2 PISTACHIO 14.49" or "1076903 PISTACHIO 14.49"
    product_pattern = r"(?:(\d+)\s+)?([A-Z0-9 ]+)\s+(\d+\.\d{2})"
    matches = re.findall(product_pattern, text)
    
    products = []
    for match in matches:
        quantity, name, price = match
        product = {
            "name": name.strip(),
            "price": float(price),
            "quantity": int(quantity) if quantity else 1,
            "total": float(price) * (int(quantity) if quantity else 1)
        }
        products.append(product)
    
    return products

def extract_with_perplexity_llm(ocr_text):
    prompt = f"""
You are an expert at extracting structured data from receipts.

From the following OCR text, extract these fields and return them as a JSON object with exactly these keys:
- name (customer name)
- date (date of purchase)
- amount_paid (total amount paid)
- receipt_no (receipt number)
- products (a list of all products, each with name, price, and quantity if available)

Example output:
{{
  "name": "Mrs. Genevieve Lopez",
  "date": "12/13/2024",
  "amount_paid": 29.69,
  "receipt_no": "042085",
  "products": [
    {{"name": "Orange Juice", "price": 2.15, "quantity": 1}},
    {{"name": "Apples", "price": 3.50, "quantity": 1}}
  ]
}}

Text:
\"\"\"{ocr_text}\"\"\"
"""
    messages = [
        {
            "role": "system",
            "content": "You are an AI assistant that extracts structured information from text."
        },
        {
            "role": "user",
            "content": prompt
        }
    ]
    
    response = client.chat.completions.create(
        model="sonar-pro",
        messages=messages
    )
    return response.choices[0].message.content

def convert_floats_to_decimal(obj):
    if isinstance(obj, float):
        return Decimal(str(obj))
    elif isinstance(obj, dict):
        return {k: convert_floats_to_decimal(v) for k, v in obj.items()}
    elif isinstance(obj, list):
        return [convert_floats_to_decimal(i) for i in obj]
    else:
        return obj

def save_to_dynamodb(data, table_name="Receipts"):
    dynamodb = boto3.resource('dynamodb')
    table = dynamodb.Table(table_name)
    
    # Calculate total amount if not provided
    if "products" in data and not data.get("amount_paid"):
        total = sum(product["total"] for product in data["products"])
        data["amount_paid"] = total
    
    # Convert all float values to Decimal for DynamoDB
    data = convert_floats_to_decimal(data)
    
    # Generate receipt number if not present
    if not data.get("receipt_no"):
        data["receipt_no"] = str(uuid.uuid4())
    
    table.put_item(Item=data)

def merge_extractions(regex_fields, llm_fields):
    merged = {}
    for key in ["name", "date", "amount_paid", "receipt_no"]:
        merged[key] = llm_fields.get(key) or regex_fields.get(key)
    merged["products"] = llm_fields.get("products") or regex_fields.get("products")
    return merged

def extract_handwritten_text(image):
    processor = TrOCRProcessor.from_pretrained('microsoft/trocr-base-handwritten')
    model = VisionEncoderDecoderModel.from_pretrained('microsoft/trocr-base-handwritten')
    pixel_values = processor(images=image, return_tensors="pt").pixel_values
    generated_ids = model.generate(pixel_values)
    generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
    return generated_text

@st.cache_resource
def get_paddle_ocr():
    return PaddleOCR(use_angle_cls=True, lang='en', show_log=False)

def extract_handwritten_text_paddle(image):
    ocr = get_paddle_ocr()
    # Save PIL image to a temporary file
    temp_path = 'temp_uploaded_image_paddle.jpg'
    image.save(temp_path)
    result = ocr.ocr(temp_path, cls=True)
    lines = [line[1][0] for line in result[0]]
    return '\n'.join(lines)

def main():
    st.set_page_config(
        page_title="FormIQ - Intelligent Receipt Parser",
        page_icon="πŸ“„",
        layout="wide"
    )
    
    st.title("FormIQ: Intelligent Receipt Parser")
    st.markdown("""
    Upload your documents to extract and validate information using advanced AI models.
    """)
    
    # Sidebar
    with st.sidebar:
        st.header("Settings")
        document_type = st.selectbox(
            "Document Type",
            options=["invoice", "receipt", "form"],
            index=0
        )
        
        confidence_threshold = st.slider(
            "Confidence Threshold",
            min_value=0.0,
            max_value=1.0,
            value=0.5,
            step=0.05
        )
        
        st.markdown("---")
        st.markdown("### About")
        st.markdown("""
        FormIQ uses LayoutLMv3 and Perplexity AI to extract and validate information from documents.
        """)

        # Receipt Chatbot in sidebar
        st.markdown("---")
        st.header("πŸ’¬ Receipt Chatbot")
        st.write("Ask questions about your receipts stored in DynamoDB.")
        user_question = st.text_input("Enter your question:", "What is the total amount paid?")
        if st.button("Ask Chatbot", key="sidebar_chatbot"):
            with st.spinner("Getting answer from Perplexity LLM..."):
                answer = ask_receipt_chatbot(user_question)
                st.success(answer)
    
    # Main content
    uploaded_file = st.file_uploader(
        "Upload Document",
        type=["png", "jpg", "jpeg", "pdf"],
        help="Upload a document image to process"
    )
    
    if uploaded_file is not None:
        image = Image.open(uploaded_file).convert("RGB")
        st.image(image, caption="Uploaded Document", width=600)

        handwritten_text = None
        # Option to extract handwritten text with PaddleOCR
        if st.checkbox("Extract handwritten text (PaddleOCR)?"):
            with st.spinner("Extracting handwritten text with PaddleOCR..."):
                handwritten_text = extract_handwritten_text_paddle(image)
                st.subheader("Handwritten Text Extracted (PaddleOCR)")
                st.write(handwritten_text)

        # Process button
        if st.button("Process Document"):
            with st.spinner("Processing document..."):
                try:
                    temp_path = "temp_uploaded_image.jpg"
                    image.save(temp_path)

                    # Use handwritten text if available, else fallback to pytesseract
                    if handwritten_text:
                        llm_input_text = handwritten_text
                    else:
                        llm_input_text = pytesseract.image_to_string(Image.open(temp_path))

                    llm_result = extract_with_perplexity_llm(llm_input_text)
                    llm_json = extract_json_from_llm_output(llm_result)
                    st.subheader("Structured Data (Perplexity LLM)")
                    if llm_json:
                        try:
                            llm_data = json.loads(llm_json)
                            st.json(llm_data)
                            save_to_dynamodb(llm_data)
                            st.success("Saved to DynamoDB!")
                        except Exception as e:
                            st.error(f"Failed to parse LLM output as JSON: {e}")
                    else:
                        st.warning("No valid JSON found in LLM output.")

                except Exception as e:
                    logger.error(f"Error processing document: {str(e)}")
                    st.error(f"Error processing document: {str(e)}")

    st.header("Model Training & Evaluation Demo")

    if st.button("Start Training"):
        epochs = 10
        num_classes = 3  # Example: 3 classes for confusion matrix
        losses = []
        val_losses = []
        accuracies = []
        progress = st.progress(0)
        chart = st.line_chart({"Loss": [], "Val Loss": [], "Accuracy": []})

        writer = SummaryWriter("logs")

        for epoch in range(epochs):
            # Simulate training
            loss = np.exp(-epoch/5) + np.random.rand() * 0.05
            val_loss = loss + np.random.rand() * 0.02
            acc = 1 - loss + np.random.rand() * 0.02
            losses.append(loss)
            val_losses.append(val_loss)
            accuracies.append(acc)
            chart.add_rows({"Loss": [loss], "Val Loss": [val_loss], "Accuracy": [acc]})
            progress.progress((epoch+1)/epochs)
            st.write(f"Epoch {epoch+1}: Loss={loss:.4f}, Val Loss={val_loss:.4f}, Accuracy={acc:.4f}")

            # Log to TensorBoard
            writer.add_scalar("loss", loss, epoch)
            writer.add_scalar("val_loss", val_loss, epoch)
            writer.add_scalar("accuracy", acc, epoch)

            # Simulate predictions and labels for confusion matrix
            y_true = np.random.randint(0, num_classes, 100)
            y_pred = y_true.copy()
            y_pred[np.random.choice(100, 10, replace=False)] = np.random.randint(0, num_classes, 10)
            cm = confusion_matrix(y_true, y_pred, labels=range(num_classes))

            # Only log confusion matrix in the last epoch
            if epoch == epochs - 1:
                fig, ax = plt.subplots()
                disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=[f"Class {i}" for i in range(num_classes)])
                disp.plot(ax=ax)
                plt.close(fig)
                writer.add_figure("confusion_matrix", fig, epoch)

        writer.close()
        st.success("Training complete!")

        # Show last confusion matrix in Streamlit
        if 'cm' in locals():
            st.subheader("Confusion Matrix (Last Epoch)")
            fig, ax = plt.subplots()
            disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=[f"Class {i}" for i in range(num_classes)])
            disp.plot(ax=ax)
            st.pyplot(fig)
        else:
            st.info("Confusion matrix not found.")

if __name__ == "__main__":
    main()