formiq / app.py
chandini2595's picture
Remove post-training TensorBoard log charts
6fa72c7
raw
history blame
8.51 kB
import streamlit as st
import torch
from transformers import LayoutLMv3Processor, LayoutLMv3ForTokenClassification
from PIL import Image
import io
import json
import pandas as pd
import plotly.express as px
import numpy as np
from typing import Dict, Any
import logging
import pytesseract
import re
from openai import OpenAI
import os
from dotenv import load_dotenv
from chatbot_utils import ask_receipt_chatbot
import time
from tensorboard.backend.event_processing import event_accumulator
from torch.utils.tensorboard import SummaryWriter
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Load environment variables
load_dotenv()
# Initialize OpenAI client for Perplexity
api_key = os.getenv('PERPLEXITY_API_KEY')
if not api_key:
st.error("""
⚠️ Perplexity API key not found! Please add your API key to the Space's secrets:
1. Go to Space Settings
2. Click on 'Repository secrets'
3. Add a new secret with name 'PERPLEXITY_API_KEY'
4. Add your Perplexity API key as the value
""")
st.stop()
client = OpenAI(
api_key=api_key,
base_url="https://api.perplexity.ai"
)
# Initialize LayoutLM model
@st.cache_resource
def load_model():
model_name = "microsoft/layoutlmv3-base"
processor = LayoutLMv3Processor.from_pretrained(model_name)
model = LayoutLMv3ForTokenClassification.from_pretrained(model_name)
return processor, model
def extract_json_from_llm_output(llm_result):
match = re.search(r'\{.*\}', llm_result, re.DOTALL)
if match:
return match.group(0)
return None
def extract_fields(image_path):
# OCR
text = pytesseract.image_to_string(Image.open(image_path))
# Display OCR output for debugging
st.subheader("Raw OCR Output")
st.code(text)
# Improved Regex patterns for fields
patterns = {
"name": r"Mrs\s+\w+\s+\w+",
"date": r"Date[:\s]+([\d/]+)",
"product": r"\d+\s+\w+.*Style\s+\d+",
"amount_paid": r"Total Paid\s+\$?([\d.,]+)",
"receipt_no": r"Receipt No\.?\s*:?\s*(\d+)"
}
results = {}
for field, pattern in patterns.items():
match = re.search(pattern, text, re.IGNORECASE)
if match:
results[field] = match.group(1) if match.groups() else match.group(0)
else:
results[field] = None
return results
def extract_with_perplexity_llm(ocr_text):
prompt = f"""
Extract the following fields from this receipt text:
- name
- date
- product
- amount_paid
- receipt_no
Text:
\"\"\"{ocr_text}\"\"\"
Return the result as a JSON object with those fields.
"""
messages = [
{
"role": "system",
"content": "You are an AI assistant that extracts structured information from text."
},
{
"role": "user",
"content": prompt
}
]
response = client.chat.completions.create(
model="sonar-pro",
messages=messages
)
return response.choices[0].message.content
def main():
st.set_page_config(
page_title="FormIQ - Intelligent Document Parser",
page_icon="πŸ“„",
layout="wide"
)
st.title("FormIQ: Intelligent Document Parser")
st.markdown("""
Upload your documents to extract and validate information using advanced AI models.
""")
# Sidebar
with st.sidebar:
st.header("Settings")
document_type = st.selectbox(
"Document Type",
options=["invoice", "receipt", "form"],
index=0
)
confidence_threshold = st.slider(
"Confidence Threshold",
min_value=0.0,
max_value=1.0,
value=0.5,
step=0.05
)
st.markdown("---")
st.markdown("### About")
st.markdown("""
FormIQ uses LayoutLMv3 and Perplexity AI to extract and validate information from documents.
""")
# Receipt Chatbot in sidebar
st.markdown("---")
st.header("πŸ’¬ Receipt Chatbot")
st.write("Ask questions about your receipts stored in DynamoDB.")
user_question = st.text_input("Enter your question:", "What is the total amount paid?")
if st.button("Ask Chatbot", key="sidebar_chatbot"):
with st.spinner("Getting answer from Perplexity LLM..."):
answer = ask_receipt_chatbot(user_question)
st.success(answer)
# Main content
uploaded_file = st.file_uploader(
"Upload Document",
type=["png", "jpg", "jpeg", "pdf"],
help="Upload a document image to process"
)
if uploaded_file is not None:
# Display uploaded image
image = Image.open(uploaded_file)
st.image(image, caption="Uploaded Document", width=600)
# Process button
if st.button("Process Document"):
with st.spinner("Processing document..."):
try:
# Save the uploaded file to a temporary location
temp_path = "temp_uploaded_image.jpg"
image.save(temp_path)
# Extract fields using OCR + regex
fields = extract_fields(temp_path)
# Extract with Perplexity LLM
with st.spinner("Extracting structured data with Perplexity LLM..."):
try:
llm_result = extract_with_perplexity_llm(pytesseract.image_to_string(Image.open(temp_path)))
st.subheader("Structured Data (Perplexity LLM)")
st.code(llm_result, language="json")
# Display extracted fields
st.subheader("Extracted Fields")
fields_df = pd.DataFrame([fields])
st.dataframe(fields_df)
except Exception as e:
st.error(f"LLM extraction failed: {e}")
except Exception as e:
logger.error(f"Error processing document: {str(e)}")
st.error(f"Error processing document: {str(e)}")
st.header("Model Training & Evaluation Demo")
if st.button("Start Training"):
epochs = 10
num_classes = 3 # Example: 3 classes for confusion matrix
losses = []
val_losses = []
accuracies = []
progress = st.progress(0)
chart = st.line_chart({"Loss": [], "Val Loss": [], "Accuracy": []})
writer = SummaryWriter("logs")
for epoch in range(epochs):
# Simulate training
loss = np.exp(-epoch/5) + np.random.rand() * 0.05
val_loss = loss + np.random.rand() * 0.02
acc = 1 - loss + np.random.rand() * 0.02
losses.append(loss)
val_losses.append(val_loss)
accuracies.append(acc)
chart.add_rows({"Loss": [loss], "Val Loss": [val_loss], "Accuracy": [acc]})
progress.progress((epoch+1)/epochs)
st.write(f"Epoch {epoch+1}: Loss={loss:.4f}, Val Loss={val_loss:.4f}, Accuracy={acc:.4f}")
# Log to TensorBoard
writer.add_scalar("loss", loss, epoch)
writer.add_scalar("val_loss", val_loss, epoch)
writer.add_scalar("accuracy", acc, epoch)
# Simulate predictions and labels for confusion matrix
y_true = np.random.randint(0, num_classes, 100)
y_pred = y_true.copy()
# Add some noise to predictions
y_pred[np.random.choice(100, 10, replace=False)] = np.random.randint(0, num_classes, 10)
cm = confusion_matrix(y_true, y_pred, labels=range(num_classes))
# Only log confusion matrix in the last epoch
if epoch == epochs - 1:
fig, ax = plt.subplots()
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=[f"Class {i}" for i in range(num_classes)])
disp.plot(ax=ax)
plt.close(fig)
writer.add_figure("confusion_matrix", fig, epoch)
time.sleep(0.5)
writer.close()
st.success("Training complete!")
# Wait a moment to ensure logs are written
time.sleep(1)
if __name__ == "__main__":
main()