import torch from transformers import LayoutLMv3Processor, LayoutLMv3ForTokenClassification from PIL import Image import numpy as np from typing import Dict, List, Tuple, Optional import logging logger = logging.getLogger(__name__) class FormIQModel: def __init__( self, model_name: str = "microsoft/layoutlmv3-base", device: str = "cuda" if torch.cuda.is_available() else "cpu" ): """Initialize the FormIQ model with LayoutLMv3. Args: model_name: Name of the pre-trained model to use device: Device to run the model on ('cuda' or 'cpu') """ self.device = device self.processor = LayoutLMv3Processor.from_pretrained(model_name) self.model = LayoutLMv3ForTokenClassification.from_pretrained(model_name) self.model.to(device) logger.info(f"Model initialized on {device}") def preprocess_image(self, image: Image.Image) -> Dict[str, torch.Tensor]: """Preprocess the input image for the model. Args: image: PIL Image to process Returns: Dictionary of processed inputs """ try: # Process image and text encoding = self.processor( image, return_tensors="pt", truncation=True, max_length=512 ) # Move tensors to device encoding = {k: v.to(self.device) for k, v in encoding.items()} return encoding except Exception as e: logger.error(f"Error preprocessing image: {str(e)}") raise def predict( self, image: Image.Image, confidence_threshold: float = 0.5 ) -> Dict[str, List[Dict[str, any]]]: """Extract information from the document image. Args: image: PIL Image of the document confidence_threshold: Minimum confidence score for predictions Returns: Dictionary containing extracted fields and their metadata """ try: # Preprocess image inputs = self.preprocess_image(image) # Get model predictions with torch.no_grad(): outputs = self.model(**inputs) predictions = outputs.logits.argmax(-1).squeeze().cpu().numpy() scores = torch.softmax(outputs.logits, dim=-1).max(-1)[0].squeeze().cpu().numpy() # Process predictions extracted_fields = self._process_predictions(predictions, scores, confidence_threshold) return { "fields": extracted_fields, "metadata": { "confidence_scores": scores.tolist(), "model_version": self.model.config.model_type } } except Exception as e: logger.error(f"Error during prediction: {str(e)}") raise def _process_predictions( self, predictions: np.ndarray, scores: np.ndarray, confidence_threshold: float ) -> List[Dict[str, any]]: """Process raw model predictions into structured output. Args: predictions: Array of predicted class indices scores: Array of confidence scores confidence_threshold: Minimum confidence score Returns: List of dictionaries containing field information """ # TODO: Implement field-specific post-processing # This is a placeholder implementation processed_fields = [] for pred, score in zip(predictions, scores): if score >= confidence_threshold: field_info = { "label": self.model.config.id2label[pred], "confidence": float(score), "bbox": None # TODO: Add bounding box information } processed_fields.append(field_info) return processed_fields def validate_extraction( self, extracted_fields: Dict[str, List[Dict[str, any]]], document_type: str ) -> Dict[str, any]: """Validate extracted fields based on document type rules. Args: extracted_fields: Dictionary of extracted fields document_type: Type of document (e.g., 'invoice', 'receipt') Returns: Dictionary containing validation results """ # TODO: Implement field validation logic # This is a placeholder implementation return { "is_valid": True, "validation_errors": [], "confidence_score": 1.0 }