Spaces:
Running
Running
import streamlit as st | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
# Load the model and tokenizer from Hugging Face | |
model_name = "Salesforce/codet5-small" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name) | |
# Streamlit UI | |
st.title("Code Generator") | |
st.write("Generate code snippets from natural language prompts using CodeT5!") | |
# Input for natural language prompt | |
prompt = st.text_area("Enter your coding task:", placeholder="Write a Python function to calculate the factorial of a number.") | |
# Slider to control output length | |
max_length = st.slider("Maximum length of generated code:", 20, 200, 50) | |
# Button to trigger code generation | |
if st.button("Generate Code"): | |
if prompt.strip(): | |
# Tokenize and generate code | |
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, padding=True) | |
outputs = model.generate(inputs.input_ids, max_length=max_length, num_beams=4, early_stopping=True) | |
generated_code = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Display generated code | |
st.write("### Generated Code:") | |
st.code(generated_code, language="python") | |
else: | |
st.warning("Please enter a prompt to generate code.") | |