Update llama/model.py
Browse files- llama/model.py +114 -42
llama/model.py
CHANGED
|
@@ -1,20 +1,18 @@
|
|
| 1 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
| 2 |
# This software may be used and distributed according to the terms of the GNU General Public License version 3.
|
| 3 |
|
| 4 |
-
from
|
|
|
|
|
|
|
| 5 |
from dataclasses import dataclass
|
| 6 |
import math
|
| 7 |
|
| 8 |
import torch
|
| 9 |
from torch import nn
|
| 10 |
import torch.nn.functional as F
|
|
|
|
| 11 |
|
| 12 |
-
import
|
| 13 |
-
from fairscale.nn.model_parallel.layers import (
|
| 14 |
-
ParallelEmbedding,
|
| 15 |
-
RowParallelLinear,
|
| 16 |
-
ColumnParallelLinear,
|
| 17 |
-
)
|
| 18 |
|
| 19 |
|
| 20 |
@dataclass
|
|
@@ -73,40 +71,57 @@ def apply_rotary_emb(
|
|
| 73 |
return xq_out.type_as(xq), xk_out.type_as(xk)
|
| 74 |
|
| 75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
class Attention(nn.Module):
|
| 77 |
def __init__(self, args: ModelArgs):
|
| 78 |
super().__init__()
|
| 79 |
|
| 80 |
-
self.n_local_heads =
|
|
|
|
|
|
|
| 81 |
self.head_dim = args.dim // args.n_heads
|
| 82 |
|
| 83 |
-
|
|
|
|
| 84 |
args.dim,
|
| 85 |
args.n_heads * self.head_dim,
|
| 86 |
bias=False,
|
| 87 |
-
gather_output=False,
|
| 88 |
-
init_method=lambda x: x,
|
| 89 |
)
|
| 90 |
-
self.wk =
|
| 91 |
args.dim,
|
| 92 |
args.n_heads * self.head_dim,
|
| 93 |
bias=False,
|
| 94 |
-
gather_output=False,
|
| 95 |
-
init_method=lambda x: x,
|
| 96 |
)
|
| 97 |
-
self.wv =
|
| 98 |
args.dim,
|
| 99 |
args.n_heads * self.head_dim,
|
| 100 |
bias=False,
|
| 101 |
-
gather_output=False,
|
| 102 |
-
init_method=lambda x: x,
|
| 103 |
)
|
| 104 |
-
self.wo =
|
| 105 |
-
args.n_heads * self.head_dim,
|
| 106 |
args.dim,
|
|
|
|
| 107 |
bias=False,
|
| 108 |
-
input_is_parallel=True,
|
| 109 |
-
init_method=lambda x: x,
|
| 110 |
)
|
| 111 |
|
| 112 |
self.cache_k = torch.zeros(
|
|
@@ -116,7 +131,13 @@ class Attention(nn.Module):
|
|
| 116 |
(args.max_batch_size, args.max_seq_len, self.n_local_heads, self.head_dim)
|
| 117 |
).cuda()
|
| 118 |
|
| 119 |
-
def forward(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
bsz, seqlen, _ = x.shape
|
| 121 |
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
|
| 122 |
|
|
@@ -143,9 +164,7 @@ class Attention(nn.Module):
|
|
| 143 |
scores = scores + mask # (bs, n_local_heads, slen, cache_len + slen)
|
| 144 |
scores = F.softmax(scores.float(), dim=-1).type_as(xq)
|
| 145 |
output = torch.matmul(scores, values) # (bs, n_local_heads, slen, head_dim)
|
| 146 |
-
output = output.transpose(
|
| 147 |
-
1, 2
|
| 148 |
-
).contiguous().view(bsz, seqlen, -1)
|
| 149 |
|
| 150 |
return self.wo(output)
|
| 151 |
|
|
@@ -161,14 +180,17 @@ class FeedForward(nn.Module):
|
|
| 161 |
hidden_dim = int(2 * hidden_dim / 3)
|
| 162 |
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
|
| 163 |
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
|
|
|
| 169 |
)
|
| 170 |
-
self.w3 =
|
| 171 |
-
dim,
|
|
|
|
|
|
|
| 172 |
)
|
| 173 |
|
| 174 |
def forward(self, x):
|
|
@@ -189,12 +211,36 @@ class TransformerBlock(nn.Module):
|
|
| 189 |
self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps)
|
| 190 |
self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps)
|
| 191 |
|
| 192 |
-
def forward(
|
| 193 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 194 |
out = h + self.feed_forward.forward(self.ffn_norm(h))
|
| 195 |
return out
|
| 196 |
|
| 197 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 198 |
class Transformer(nn.Module):
|
| 199 |
def __init__(self, params: ModelArgs):
|
| 200 |
super().__init__()
|
|
@@ -202,18 +248,16 @@ class Transformer(nn.Module):
|
|
| 202 |
self.vocab_size = params.vocab_size
|
| 203 |
self.n_layers = params.n_layers
|
| 204 |
|
| 205 |
-
self.tok_embeddings =
|
| 206 |
-
params.vocab_size, params.dim, init_method=lambda x: x
|
| 207 |
-
)
|
| 208 |
|
| 209 |
self.layers = torch.nn.ModuleList()
|
| 210 |
for layer_id in range(params.n_layers):
|
| 211 |
self.layers.append(TransformerBlock(layer_id, params))
|
| 212 |
|
| 213 |
self.norm = RMSNorm(params.dim, eps=params.norm_eps)
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
)
|
| 217 |
|
| 218 |
self.freqs_cis = precompute_freqs_cis(
|
| 219 |
self.params.dim // self.params.n_heads, self.params.max_seq_len * 2
|
|
@@ -228,11 +272,39 @@ class Transformer(nn.Module):
|
|
| 228 |
|
| 229 |
mask = None
|
| 230 |
if seqlen > 1:
|
| 231 |
-
mask = torch.full(
|
|
|
|
|
|
|
| 232 |
mask = torch.triu(mask, diagonal=start_pos + 1).type_as(h)
|
| 233 |
|
| 234 |
for layer in self.layers:
|
| 235 |
h = layer(h, start_pos, freqs_cis, mask)
|
| 236 |
h = self.norm(h)
|
| 237 |
output = self.output(h[:, -1, :]) # only compute last logits
|
| 238 |
-
return output.float()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
| 2 |
# This software may be used and distributed according to the terms of the GNU General Public License version 3.
|
| 3 |
|
| 4 |
+
from contextvars import ContextVar
|
| 5 |
+
|
| 6 |
+
from typing import Optional, Tuple, Type
|
| 7 |
from dataclasses import dataclass
|
| 8 |
import math
|
| 9 |
|
| 10 |
import torch
|
| 11 |
from torch import nn
|
| 12 |
import torch.nn.functional as F
|
| 13 |
+
import bitsandbytes as bnb
|
| 14 |
|
| 15 |
+
import tqdm
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
|
| 18 |
@dataclass
|
|
|
|
| 71 |
return xq_out.type_as(xq), xk_out.type_as(xk)
|
| 72 |
|
| 73 |
|
| 74 |
+
class UninitializedLinear(nn.Linear):
|
| 75 |
+
def reset_parameters(self) -> None:
|
| 76 |
+
pass
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
class InferenceQuantizedLinear(bnb.nn.Linear8bitLt):
|
| 80 |
+
def __init__(self, *args, **kwargs):
|
| 81 |
+
super().__init__(has_fp16_weights=False, *args, **kwargs)
|
| 82 |
+
|
| 83 |
+
def reset_parameters(self) -> None:
|
| 84 |
+
pass
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
default_quantize: ContextVar[bool] = ContextVar("default_quantize", default=False)
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
def get_linear_class() -> Type[nn.Linear]:
|
| 91 |
+
if default_quantize.get():
|
| 92 |
+
return InferenceQuantizedLinear
|
| 93 |
+
return UninitializedLinear
|
| 94 |
+
|
| 95 |
+
|
| 96 |
class Attention(nn.Module):
|
| 97 |
def __init__(self, args: ModelArgs):
|
| 98 |
super().__init__()
|
| 99 |
|
| 100 |
+
self.n_local_heads = (
|
| 101 |
+
args.n_heads // 1
|
| 102 |
+
) # fs_init.get_model_parallel_world_size()
|
| 103 |
self.head_dim = args.dim // args.n_heads
|
| 104 |
|
| 105 |
+
Linear = get_linear_class()
|
| 106 |
+
self.wq = Linear(
|
| 107 |
args.dim,
|
| 108 |
args.n_heads * self.head_dim,
|
| 109 |
bias=False,
|
|
|
|
|
|
|
| 110 |
)
|
| 111 |
+
self.wk = Linear(
|
| 112 |
args.dim,
|
| 113 |
args.n_heads * self.head_dim,
|
| 114 |
bias=False,
|
|
|
|
|
|
|
| 115 |
)
|
| 116 |
+
self.wv = Linear(
|
| 117 |
args.dim,
|
| 118 |
args.n_heads * self.head_dim,
|
| 119 |
bias=False,
|
|
|
|
|
|
|
| 120 |
)
|
| 121 |
+
self.wo = Linear(
|
|
|
|
| 122 |
args.dim,
|
| 123 |
+
args.n_heads * self.head_dim,
|
| 124 |
bias=False,
|
|
|
|
|
|
|
| 125 |
)
|
| 126 |
|
| 127 |
self.cache_k = torch.zeros(
|
|
|
|
| 131 |
(args.max_batch_size, args.max_seq_len, self.n_local_heads, self.head_dim)
|
| 132 |
).cuda()
|
| 133 |
|
| 134 |
+
def forward(
|
| 135 |
+
self,
|
| 136 |
+
x: torch.Tensor,
|
| 137 |
+
start_pos: int,
|
| 138 |
+
freqs_cis: torch.Tensor,
|
| 139 |
+
mask: Optional[torch.Tensor],
|
| 140 |
+
):
|
| 141 |
bsz, seqlen, _ = x.shape
|
| 142 |
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
|
| 143 |
|
|
|
|
| 164 |
scores = scores + mask # (bs, n_local_heads, slen, cache_len + slen)
|
| 165 |
scores = F.softmax(scores.float(), dim=-1).type_as(xq)
|
| 166 |
output = torch.matmul(scores, values) # (bs, n_local_heads, slen, head_dim)
|
| 167 |
+
output = output.transpose(1, 2).contiguous().view(bsz, seqlen, -1)
|
|
|
|
|
|
|
| 168 |
|
| 169 |
return self.wo(output)
|
| 170 |
|
|
|
|
| 180 |
hidden_dim = int(2 * hidden_dim / 3)
|
| 181 |
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
|
| 182 |
|
| 183 |
+
Linear = get_linear_class()
|
| 184 |
+
self.w1 = Linear(dim, hidden_dim, bias=False)
|
| 185 |
+
self.w2 = Linear(
|
| 186 |
+
hidden_dim,
|
| 187 |
+
dim,
|
| 188 |
+
bias=False,
|
| 189 |
)
|
| 190 |
+
self.w3 = Linear(
|
| 191 |
+
dim,
|
| 192 |
+
hidden_dim,
|
| 193 |
+
bias=False,
|
| 194 |
)
|
| 195 |
|
| 196 |
def forward(self, x):
|
|
|
|
| 211 |
self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps)
|
| 212 |
self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps)
|
| 213 |
|
| 214 |
+
def forward(
|
| 215 |
+
self,
|
| 216 |
+
x: torch.Tensor,
|
| 217 |
+
start_pos: int,
|
| 218 |
+
freqs_cis: torch.Tensor,
|
| 219 |
+
mask: Optional[torch.Tensor],
|
| 220 |
+
):
|
| 221 |
+
h = x + self.attention.forward(
|
| 222 |
+
self.attention_norm(x), start_pos, freqs_cis, mask
|
| 223 |
+
)
|
| 224 |
out = h + self.feed_forward.forward(self.ffn_norm(h))
|
| 225 |
return out
|
| 226 |
|
| 227 |
|
| 228 |
+
def convert_linear_to_bnb(float_linear):
|
| 229 |
+
new_layer = InferenceQuantizedLinear(
|
| 230 |
+
float_linear.in_features,
|
| 231 |
+
float_linear.out_features,
|
| 232 |
+
bias=float_linear.bias is not None,
|
| 233 |
+
)
|
| 234 |
+
new_layer._parameters["weight"] = bnb.nn.Int8Params(
|
| 235 |
+
float_linear.weight.data.cpu(),
|
| 236 |
+
requires_grad=False,
|
| 237 |
+
has_fp16_weights=False,
|
| 238 |
+
)
|
| 239 |
+
if float_linear.bias is not None:
|
| 240 |
+
new_layer._parameters["bias"] = float_linear.bias
|
| 241 |
+
return new_layer
|
| 242 |
+
|
| 243 |
+
|
| 244 |
class Transformer(nn.Module):
|
| 245 |
def __init__(self, params: ModelArgs):
|
| 246 |
super().__init__()
|
|
|
|
| 248 |
self.vocab_size = params.vocab_size
|
| 249 |
self.n_layers = params.n_layers
|
| 250 |
|
| 251 |
+
self.tok_embeddings = torch.nn.Embedding(params.vocab_size, params.dim)
|
|
|
|
|
|
|
| 252 |
|
| 253 |
self.layers = torch.nn.ModuleList()
|
| 254 |
for layer_id in range(params.n_layers):
|
| 255 |
self.layers.append(TransformerBlock(layer_id, params))
|
| 256 |
|
| 257 |
self.norm = RMSNorm(params.dim, eps=params.norm_eps)
|
| 258 |
+
|
| 259 |
+
Linear = get_linear_class()
|
| 260 |
+
self.output = Linear(params.dim, params.vocab_size, bias=False)
|
| 261 |
|
| 262 |
self.freqs_cis = precompute_freqs_cis(
|
| 263 |
self.params.dim // self.params.n_heads, self.params.max_seq_len * 2
|
|
|
|
| 272 |
|
| 273 |
mask = None
|
| 274 |
if seqlen > 1:
|
| 275 |
+
mask = torch.full(
|
| 276 |
+
(1, 1, seqlen, seqlen), float("-inf"), device=tokens.device
|
| 277 |
+
)
|
| 278 |
mask = torch.triu(mask, diagonal=start_pos + 1).type_as(h)
|
| 279 |
|
| 280 |
for layer in self.layers:
|
| 281 |
h = layer(h, start_pos, freqs_cis, mask)
|
| 282 |
h = self.norm(h)
|
| 283 |
output = self.output(h[:, -1, :]) # only compute last logits
|
| 284 |
+
return output.float()
|
| 285 |
+
|
| 286 |
+
def quantize(self):
|
| 287 |
+
# https://github.com/pytorch/vision/issues/2391#issuecomment-653900218
|
| 288 |
+
def get_layer(model, name):
|
| 289 |
+
layer = model
|
| 290 |
+
for attr in name.split("."):
|
| 291 |
+
layer = getattr(layer, attr)
|
| 292 |
+
return layer
|
| 293 |
+
|
| 294 |
+
def set_layer(model, name, layer):
|
| 295 |
+
try:
|
| 296 |
+
attrs, name = name.rsplit(".", 1)
|
| 297 |
+
model = get_layer(model, attrs)
|
| 298 |
+
except ValueError:
|
| 299 |
+
pass
|
| 300 |
+
setattr(model, name, layer)
|
| 301 |
+
|
| 302 |
+
linear_layers = {
|
| 303 |
+
k: v for k, v in self.named_modules() if isinstance(v, nn.Linear)
|
| 304 |
+
}
|
| 305 |
+
|
| 306 |
+
print("Quantizing", len(linear_layers), "layers")
|
| 307 |
+
for name, layer in tqdm.tqdm(linear_layers.items()):
|
| 308 |
+
new_layer = convert_linear_to_bnb(layer)
|
| 309 |
+
set_layer(self, name, new_layer)
|
| 310 |
+
self.cuda()
|