Spaces:
Running
Running
File size: 10,084 Bytes
80a1334 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
import os
from dotenv import load_dotenv
import google.generativeai as genai
from hardware_detector import HardwareDetector
from typing import Dict, List
load_dotenv()
class AutoDiffusersGenerator:
def __init__(self, api_key: str):
genai.configure(api_key=api_key)
self.model = genai.GenerativeModel('gemini-2.5-flash-preview-05-20')
self.hardware_detector = HardwareDetector()
def generate_optimized_code(self,
model_name: str,
prompt_text: str,
image_size: tuple = (768, 1360),
num_inference_steps: int = 4,
use_manual_specs: bool = False,
manual_specs: Dict = None,
memory_analysis: Dict = None) -> str:
"""Generate optimized diffusers code based on hardware specs and memory analysis."""
# Get hardware specifications
if use_manual_specs and manual_specs:
hardware_specs = manual_specs
# Determine optimization profile based on manual specs
if hardware_specs.get('gpu_info') and hardware_specs['gpu_info']:
vram_gb = hardware_specs['gpu_info'][0]['memory_mb'] / 1024
if vram_gb >= 16:
optimization_profile = 'performance'
elif vram_gb >= 8:
optimization_profile = 'balanced'
else:
optimization_profile = 'memory_efficient'
else:
optimization_profile = 'cpu_only'
else:
hardware_specs = self.hardware_detector.specs
optimization_profile = self.hardware_detector.get_optimization_profile()
# Create the prompt for Gemini API
system_prompt = self._create_generation_prompt(
model_name, prompt_text, image_size, num_inference_steps,
hardware_specs, optimization_profile, memory_analysis
)
try:
response = self.model.generate_content(system_prompt)
return response.text
except Exception as e:
return f"Error generating code: {str(e)}"
def _create_generation_prompt(self,
model_name: str,
prompt_text: str,
image_size: tuple,
num_inference_steps: int,
hardware_specs: Dict,
optimization_profile: str,
memory_analysis: Dict = None) -> str:
"""Create the prompt for Gemini API to generate optimized code."""
base_prompt = f"""
You are an expert in optimizing diffusers library code for different hardware configurations.
TASK: Generate optimized Python code for running a diffusion model with the following specifications:
- Model: {model_name}
- Prompt: "{prompt_text}"
- Image size: {image_size[0]}x{image_size[1]}
- Inference steps: {num_inference_steps}
HARDWARE SPECIFICATIONS:
- Platform: {hardware_specs['platform']} ({hardware_specs['architecture']})
- CPU Cores: {hardware_specs['cpu_count']}
- CUDA Available: {hardware_specs['cuda_available']}
- MPS Available: {hardware_specs['mps_available']}
- Optimization Profile: {optimization_profile}
"""
if hardware_specs.get('gpu_info'):
base_prompt += f"- GPU: {hardware_specs['gpu_info'][0]['name']} ({hardware_specs['gpu_info'][0]['memory_mb']/1024:.1f} GB VRAM)\n"
# Add user dtype preference if specified
if hardware_specs.get('user_dtype'):
base_prompt += f"- User specified dtype: {hardware_specs['user_dtype']}\n"
# Add memory analysis information
if memory_analysis:
memory_info = memory_analysis.get('memory_info', {})
recommendations = memory_analysis.get('recommendations', {})
base_prompt += f"\nMEMORY ANALYSIS:\n"
if memory_info.get('estimated_inference_memory_fp16_gb'):
base_prompt += f"- Model Memory Requirements: {memory_info['estimated_inference_memory_fp16_gb']} GB (FP16 inference)\n"
if memory_info.get('memory_fp16_gb'):
base_prompt += f"- Model Weights Size: {memory_info['memory_fp16_gb']} GB (FP16)\n"
if recommendations.get('recommendations'):
base_prompt += f"- Memory Recommendation: {', '.join(recommendations['recommendations'])}\n"
if recommendations.get('recommended_precision'):
base_prompt += f"- Recommended Precision: {recommendations['recommended_precision']}\n"
if recommendations.get('cpu_offload'):
base_prompt += f"- CPU Offloading Required: {recommendations['cpu_offload']}\n"
if recommendations.get('attention_slicing'):
base_prompt += f"- Attention Slicing Recommended: {recommendations['attention_slicing']}\n"
if recommendations.get('vae_slicing'):
base_prompt += f"- VAE Slicing Recommended: {recommendations['vae_slicing']}\n"
base_prompt += f"""
OPTIMIZATION REQUIREMENTS:
Please scrape and analyze the latest optimization techniques from this URL: https://huggingface.co/docs/diffusers/main/en/optimization
IMPORTANT: For FLUX.1-schnell models, do NOT include guidance_scale parameter as it's not needed.
Based on the hardware specs and optimization profile, generate Python code that includes:
1. **Memory Optimizations** (if low VRAM):
- Model offloading (enable_model_cpu_offload, enable_sequential_cpu_offload)
- Attention slicing (enable_attention_slicing)
- VAE slicing (enable_vae_slicing)
- Memory efficient attention
2. **Speed Optimizations**:
- Appropriate torch.compile() usage
- Optimal dtype selection (torch.float16, torch.bfloat16)
- Device placement optimization
3. **Hardware-Specific Optimizations**:
- CUDA optimizations for NVIDIA GPUs
- MPS optimizations for Apple Silicon
- CPU fallbacks when needed
4. **Model-Specific Optimizations**:
- Appropriate scheduler selection
- Optimal inference parameters
- Pipeline configuration
5. **Data Type (dtype) Selection**:
- If user specified a dtype, use that exact dtype in the code
- If no dtype specified, automatically select the optimal dtype based on hardware:
* Apple Silicon (MPS): prefer torch.bfloat16
* NVIDIA GPUs: prefer torch.float16 or torch.bfloat16 based on capability
* CPU only: use torch.float32
- Add a comment explaining why that dtype was chosen
IMPORTANT GUIDELINES:
- Include all necessary imports
- Add brief comments explaining optimization choices
- Use the most current and effective optimization techniques
- Ensure code is production-ready
CODE STYLE REQUIREMENTS - GENERATE COMPACT CODE:
- Assign static values directly to function arguments instead of using variables when possible
- Minimize variable declarations - inline values where it improves readability
- Reduce exception handling to essential cases only - assume normal operation
- Use concise, direct code patterns
- Combine operations where logical and readable
- Avoid unnecessary intermediate variables
- Keep code clean and minimal while maintaining functionality
Examples of preferred compact style:
- pipe = Pipeline.from_pretrained("model", torch_dtype=torch.float16) instead of storing dtype in variable
- image = pipe("prompt", num_inference_steps=4, height=768, width=1360) instead of separate variables
- Direct assignment: device = "cuda" if torch.cuda.is_available() else "cpu"
Generate ONLY the Python code, no explanations before or after the code block.
"""
return base_prompt
def run_interactive_mode(self):
"""Run the generator in interactive mode."""
print("=== Auto-Diffusers Code Generator ===")
print("This tool generates optimized diffusers code based on your hardware.\n")
# Check hardware
print("=== Hardware Detection ===")
self.hardware_detector.print_specs()
use_manual = input("\nUse manual hardware input? (y/n): ").lower() == 'y'
# Get user inputs
print("\n=== Model Configuration ===")
model_name = input("Model name (default: black-forest-labs/FLUX.1-schnell): ").strip()
if not model_name:
model_name = "black-forest-labs/FLUX.1-schnell"
prompt_text = input("Prompt text (default: A cat holding a sign that says hello world): ").strip()
if not prompt_text:
prompt_text = "A cat holding a sign that says hello world"
try:
width = int(input("Image width (default: 1360): ") or "1360")
height = int(input("Image height (default: 768): ") or "768")
steps = int(input("Inference steps (default: 4): ") or "4")
except ValueError:
width, height, steps = 1360, 768, 4
print("\n=== Generating Optimized Code ===")
# Generate code
optimized_code = self.generate_optimized_code(
model_name=model_name,
prompt_text=prompt_text,
image_size=(height, width),
num_inference_steps=steps,
use_manual_specs=use_manual
)
print("\n" + "="*60)
print("OPTIMIZED DIFFUSERS CODE:")
print("="*60)
print(optimized_code)
print("="*60)
def main():
# Get API key from .env file
api_key = os.getenv('GOOGLE_API_KEY')
if not api_key:
api_key = os.getenv('GEMINI_API_KEY') # fallback
if not api_key:
api_key = input("Enter your Gemini API key: ").strip()
if not api_key:
print("API key is required!")
return
generator = AutoDiffusersGenerator(api_key)
generator.run_interactive_mode()
if __name__ == "__main__":
main() |