Spaces:
Running
Running
File size: 11,395 Bytes
80a1334 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
from huggingface_hub import HfApi, hf_hub_download
from typing import Dict, Optional
import json
import os
class SimpleMemoryCalculator:
def __init__(self):
self.hf_api = HfApi()
self.cache = {}
# Known model memory requirements (in GB for FP16)
self.known_models = {
"black-forest-labs/FLUX.1-schnell": {
"params_billions": 12.0,
"fp16_gb": 24.0,
"inference_fp16_gb": 36.0
},
"black-forest-labs/FLUX.1-dev": {
"params_billions": 12.0,
"fp16_gb": 24.0,
"inference_fp16_gb": 36.0
},
"stabilityai/stable-diffusion-xl-base-1.0": {
"params_billions": 3.5,
"fp16_gb": 7.0,
"inference_fp16_gb": 12.0
},
"runwayml/stable-diffusion-v1-5": {
"params_billions": 0.86,
"fp16_gb": 1.7,
"inference_fp16_gb": 4.0
}
}
def get_model_memory_requirements(self, model_id: str) -> Dict:
"""
Get memory requirements for a model, using known values or estimating from file sizes.
"""
if model_id in self.cache:
return self.cache[model_id]
# Check if we have known values
if model_id in self.known_models:
known = self.known_models[model_id]
result = {
'model_id': model_id,
'total_params': int(known['params_billions'] * 1e9),
'total_params_billions': known['params_billions'],
'memory_fp32_gb': known['fp16_gb'] * 2,
'memory_fp16_gb': known['fp16_gb'],
'memory_bf16_gb': known['fp16_gb'],
'memory_int8_gb': known['fp16_gb'] / 2,
'estimated_inference_memory_fp16_gb': known['inference_fp16_gb'],
'estimated_inference_memory_bf16_gb': known['inference_fp16_gb'],
'source': 'known_values'
}
self.cache[model_id] = result
return result
# Try to estimate from HuggingFace API
try:
return self._estimate_from_api(model_id)
except Exception as e:
# Fallback to generic estimation
return self._generic_estimation(model_id, str(e))
def _estimate_from_api(self, model_id: str) -> Dict:
"""Estimate memory from HuggingFace model info."""
try:
print(f"Fetching model info for: {model_id}")
model_info = self.hf_api.model_info(model_id)
print(f"Successfully fetched model info for: {model_id}")
# Get file sizes from model repo
total_size_bytes = 0
safetensor_files = []
files_without_size = 0
for sibling in model_info.siblings:
if sibling.rfilename.endswith('.safetensors'):
file_size_bytes = sibling.size
if file_size_bytes is None or file_size_bytes == 0:
files_without_size += 1
print(f"Warning: No size info for {sibling.rfilename}")
# Try to estimate based on typical safetensor file sizes
if 'unet' in sibling.rfilename.lower():
file_size_bytes = 3_400_000_000 # ~3.4GB typical for UNet
elif 'text_encoder' in sibling.rfilename.lower():
file_size_bytes = 500_000_000 # ~500MB typical for text encoder
elif 'vae' in sibling.rfilename.lower():
file_size_bytes = 160_000_000 # ~160MB typical for VAE
else:
file_size_bytes = 500_000_000 # Default fallback
print(f" β Using estimated size: {file_size_bytes / (1024**3):.2f} GB")
else:
print(f"File {sibling.rfilename}: {file_size_bytes / (1024**3):.2f} GB")
size_mb = file_size_bytes / (1024 * 1024)
safetensor_files.append({
'filename': sibling.rfilename,
'size_mb': size_mb,
'estimated': file_size_bytes != sibling.size
})
total_size_bytes += file_size_bytes
print(f"Found {len(safetensor_files)} safetensor files, total size: {total_size_bytes / (1024**3):.2f} GB")
if files_without_size > 0:
print(f"Warning: {files_without_size} files had no size info, used estimates")
# Estimate parameters from file size (assuming FP16)
total_size_gb = total_size_bytes / (1024**3)
estimated_params = int((total_size_bytes / 2)) # 2 bytes per param for FP16
estimated_params_billions = estimated_params / 1e9
# Estimate inference memory (model + activations)
inference_multiplier = 1.5 # Conservative estimate
estimated_inference_memory = total_size_gb * inference_multiplier
result = {
'model_id': model_id,
'total_params': estimated_params,
'total_params_billions': estimated_params_billions,
'memory_fp32_gb': total_size_gb * 2,
'memory_fp16_gb': total_size_gb,
'memory_bf16_gb': total_size_gb,
'memory_int8_gb': total_size_gb / 2,
'estimated_inference_memory_fp16_gb': estimated_inference_memory,
'estimated_inference_memory_bf16_gb': estimated_inference_memory,
'safetensors_files': safetensor_files,
'files_without_size': files_without_size,
'source': 'api_estimation'
}
self.cache[model_id] = result
return result
except Exception as api_error:
print(f"API Error for model {model_id}: {type(api_error).__name__}: {str(api_error)}")
# Re-raise with more context
raise Exception(f"HuggingFace API Error: {type(api_error).__name__}: {str(api_error)}")
def _generic_estimation(self, model_id: str, error_msg: str) -> Dict:
"""Generic fallback estimation."""
# Default to medium-sized model estimates
default_params_billions = 3.0
default_fp16_gb = 6.0
return {
'model_id': model_id,
'total_params': int(default_params_billions * 1e9),
'total_params_billions': default_params_billions,
'memory_fp32_gb': default_fp16_gb * 2,
'memory_fp16_gb': default_fp16_gb,
'memory_bf16_gb': default_fp16_gb,
'memory_int8_gb': default_fp16_gb / 2,
'estimated_inference_memory_fp16_gb': default_fp16_gb * 1.5,
'estimated_inference_memory_bf16_gb': default_fp16_gb * 1.5,
'source': 'generic_fallback',
'error': error_msg
}
def get_memory_recommendation(self, model_id: str, available_vram_gb: float) -> Dict:
"""Get memory recommendations based on available VRAM."""
memory_info = self.get_model_memory_requirements(model_id)
recommendations = {
'model_id': model_id,
'available_vram_gb': available_vram_gb,
'model_memory_fp16_gb': memory_info['memory_fp16_gb'],
'estimated_inference_memory_fp16_gb': memory_info['estimated_inference_memory_fp16_gb'],
'recommendations': []
}
inference_memory_fp16 = memory_info['estimated_inference_memory_fp16_gb']
model_memory_fp16 = memory_info['memory_fp16_gb']
# Determine recommendations
if available_vram_gb >= inference_memory_fp16:
recommendations['recommendations'].append("β
Full model can fit in VRAM")
recommendations['recommended_precision'] = 'float16'
recommendations['cpu_offload'] = False
recommendations['attention_slicing'] = False
elif available_vram_gb >= model_memory_fp16:
recommendations['recommendations'].append("β οΈ Model weights fit, enable memory optimizations")
recommendations['recommended_precision'] = 'float16'
recommendations['cpu_offload'] = False
recommendations['attention_slicing'] = True
recommendations['vae_slicing'] = True
elif available_vram_gb >= model_memory_fp16 * 0.7:
recommendations['recommendations'].append("π Use CPU offloading for some components")
recommendations['recommended_precision'] = 'float16'
recommendations['cpu_offload'] = True
recommendations['attention_slicing'] = True
recommendations['vae_slicing'] = True
else:
recommendations['recommendations'].append("π Requires sequential CPU offloading")
recommendations['recommended_precision'] = 'float16'
recommendations['sequential_offload'] = True
recommendations['attention_slicing'] = True
recommendations['vae_slicing'] = True
return recommendations
def format_memory_info(self, model_id: str) -> str:
"""Format memory information for display."""
info = self.get_model_memory_requirements(model_id)
source_text = {
'known_values': 'π Known model specifications',
'api_estimation': 'π Estimated from model files',
'generic_fallback': 'β οΈ Generic estimation (API error)'
}.get(info.get('source', 'unknown'), 'β Unknown source')
# Add warning if file sizes were estimated
if info.get('files_without_size', 0) > 0:
source_text += f" (β οΈ {info['files_without_size']} files used size estimates)"
output = f"""
π€ **Memory Analysis for {model_id}**
{source_text}
π’ **Parameters**: {info['total_params_billions']:.1f}B parameters
πΎ **Model Memory Requirements**:
β’ FP32: {info['memory_fp32_gb']:.1f} GB
β’ FP16/BF16: {info['memory_fp16_gb']:.1f} GB
β’ INT8: {info['memory_int8_gb']:.1f} GB
π **Estimated Inference Memory**:
β’ FP16: {info['estimated_inference_memory_fp16_gb']:.1f} GB
β’ BF16: {info['estimated_inference_memory_bf16_gb']:.1f} GB
"""
if 'error' in info:
output += f"\nβ οΈ **Note**: {info['error']}"
return output.strip()
# Quick test
if __name__ == "__main__":
calc = SimpleMemoryCalculator()
models = [
"black-forest-labs/FLUX.1-schnell",
"stabilityai/stable-diffusion-xl-base-1.0",
"runwayml/stable-diffusion-v1-5"
]
for model in models:
print(f"\n{'='*60}")
print(calc.format_memory_info(model))
# Test recommendations
for vram in [8, 16, 24]:
rec = calc.get_memory_recommendation(model, vram)
print(f"\nπ‘ {vram}GB VRAM: {rec['recommendations'][0]}") |