Spaces:
Running
Running
File size: 63,385 Bytes
80a1334 aae35f1 80a1334 aae35f1 80a1334 aae35f1 80a1334 aae35f1 80a1334 aae35f1 80a1334 aae35f1 80a1334 aae35f1 80a1334 aae35f1 80a1334 aae35f1 80a1334 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 |
import os
import logging
import gradio as gr
from dotenv import load_dotenv
import google.generativeai as genai
from auto_diffusers import AutoDiffusersGenerator
from simple_memory_calculator import SimpleMemoryCalculator
load_dotenv()
# Configure logging for Gradio app
logger = logging.getLogger(__name__)
class GradioAutodiffusers:
def __init__(self):
logger.info("Initializing GradioAutodiffusers")
self.api_key = os.getenv('GOOGLE_API_KEY')
if not self.api_key:
logger.error("GOOGLE_API_KEY not found in environment variables")
raise ValueError("GOOGLE_API_KEY not found in .env file")
logger.debug(f"API key found, length: {len(self.api_key)}")
try:
self.generator = AutoDiffusersGenerator(self.api_key)
logger.info("AutoDiffusersGenerator initialized successfully")
except Exception as e:
logger.error(f"Failed to initialize AutoDiffusersGenerator: {e}")
raise
try:
self.memory_calculator = SimpleMemoryCalculator()
logger.info("SimpleMemoryCalculator initialized successfully")
except Exception as e:
logger.error(f"Failed to initialize SimpleMemoryCalculator: {e}")
raise
# Default settings
self.current_model = 'gemini-2.5-flash-preview-05-20'
self.temperature = 0.7
self.max_output_tokens = 8192
self.top_p = 0.9
self.top_k = 40
logger.debug(f"Default model settings: {self.current_model}, temp={self.temperature}")
def update_model_settings(self, model_name, temperature, max_output_tokens, top_p, top_k):
"""Update Gemini model settings."""
logger.info(f"Updating model settings: {model_name}")
logger.debug(f"New settings: temp={temperature}, max_tokens={max_output_tokens}, top_p={top_p}, top_k={top_k}")
try:
self.current_model = model_name
self.temperature = temperature
self.max_output_tokens = max_output_tokens
self.top_p = top_p
self.top_k = top_k
# Update the generator's model with new settings
genai.configure(api_key=self.api_key)
generation_config = genai.types.GenerationConfig(
temperature=temperature,
max_output_tokens=max_output_tokens,
top_p=top_p,
top_k=top_k
)
self.generator.model = genai.GenerativeModel(model_name, generation_config=generation_config)
logger.info("Model settings updated successfully")
return f"✅ Model updated to {model_name} with new settings"
except Exception as e:
logger.error(f"Failed to update model settings: {e}")
return f"❌ Failed to update model: {str(e)}"
def get_generation_prompt(self, model_name, prompt_text, image_size, num_inference_steps, hardware_specs, optimization_profile):
"""Get the actual prompt that will be sent to Gemini API."""
return self.generator._create_generation_prompt(
model_name, prompt_text, image_size, num_inference_steps,
hardware_specs, optimization_profile
)
def analyze_model_memory(self, model_name, vram_gb):
"""Analyze model memory requirements and provide recommendations."""
try:
if not vram_gb:
vram_gb = 8 # Default
memory_info = self.memory_calculator.get_model_memory_requirements(model_name)
recommendations = self.memory_calculator.get_memory_recommendation(model_name, float(vram_gb))
formatted_info = self.memory_calculator.format_memory_info(model_name)
return memory_info, recommendations, formatted_info
except Exception as e:
error_msg = f"Error analyzing model memory: {str(e)}"
return {'error': error_msg}, {'error': error_msg}, error_msg
def generate_code_with_manual_specs(self,
gpu_name,
vram_gb,
ram_gb,
platform,
model_name,
prompt_text,
dtype_selection,
width,
height,
inference_steps,
memory_analysis=None):
"""Generate optimized code with manual hardware specifications."""
try:
# Create manual hardware specs
# Parse dtype selection
if dtype_selection == "Auto (Let AI decide)":
user_dtype = None
else:
user_dtype = dtype_selection
manual_specs = {
'platform': platform,
'architecture': 'manual_input',
'cpu_count': 8, # Default
'python_version': '3.11',
'cuda_available': 'nvidia' in gpu_name.lower() if gpu_name else False,
'mps_available': platform == 'Darwin' and 'apple' in gpu_name.lower() if gpu_name else False,
'torch_version': '2.0+',
'manual_input': True,
'ram_gb': int(ram_gb) if ram_gb else 16,
'user_dtype': user_dtype
}
# Add GPU info if provided
if gpu_name and vram_gb:
manual_specs['gpu_info'] = [{
'name': gpu_name,
'memory_mb': int(vram_gb) * 1024
}]
if 'nvidia' in gpu_name.lower():
manual_specs['cuda_available'] = True
manual_specs['cuda_device_count'] = 1
manual_specs['cuda_device_name'] = gpu_name
manual_specs['cuda_memory'] = int(vram_gb)
else:
manual_specs['gpu_info'] = None
# Generate optimized code with manual specs and memory analysis
optimized_code = self.generator.generate_optimized_code(
model_name=model_name,
prompt_text=prompt_text,
image_size=(int(height), int(width)),
num_inference_steps=int(inference_steps),
use_manual_specs=True,
manual_specs=manual_specs,
memory_analysis=memory_analysis
)
# Clean up any markdown formatting
if optimized_code.startswith('```python'):
optimized_code = optimized_code[9:]
if optimized_code.endswith('```'):
optimized_code = optimized_code[:-3]
return optimized_code.strip()
except Exception as e:
return f"Error generating code: {str(e)}"
def create_gradio_interface():
"""Create and configure the Gradio interface."""
app = GradioAutodiffusers()
with gr.Blocks(
title="Auto-Diffusers Code Generator",
theme=gr.themes.Soft(
primary_hue="violet",
secondary_hue="blue",
neutral_hue="slate",
radius_size=gr.themes.sizes.radius_lg,
font=[gr.themes.GoogleFont("Poppins"), gr.themes.GoogleFont("Inter"), "system-ui", "sans-serif"]
).set(
background_fill_primary="*neutral_25",
background_fill_secondary="*neutral_50",
block_background_fill="rgba(255, 255, 255, 0.95)",
block_border_width="0px",
block_shadow="0 8px 32px rgba(0, 0, 0, 0.08)",
panel_background_fill="rgba(255, 255, 255, 0.9)",
button_primary_background_fill="*primary_500",
button_primary_background_fill_hover="*primary_600",
button_secondary_background_fill="rgba(255, 255, 255, 0.8)",
button_secondary_background_fill_hover="rgba(255, 255, 255, 0.95)"
),
css="""
/* Global Styles */
.gradio-container {
background: linear-gradient(135deg,
#667eea 0%,
#764ba2 25%,
#f093fb 50%,
#f5576c 75%,
#4facfe 100%) !important;
min-height: 100vh;
}
.main-container {
max-width: 1400px;
margin: 0 auto;
padding: 2rem;
/* Removed position: relative that can interfere with dropdown positioning */
}
/* Floating Background Elements */
.main-container::before {
content: '';
position: fixed;
top: 0;
left: 0;
right: 0;
bottom: 0;
background:
radial-gradient(circle at 20% 20%, rgba(255, 255, 255, 0.1) 0%, transparent 50%),
radial-gradient(circle at 80% 80%, rgba(255, 255, 255, 0.1) 0%, transparent 50%),
radial-gradient(circle at 40% 70%, rgba(124, 58, 237, 0.1) 0%, transparent 50%);
pointer-events: none;
z-index: -1;
}
/* Glass Morphism Effects - Fixed for Dropdown Compatibility */
.glass-card {
background: rgba(255, 255, 255, 0.25) !important;
border: 1px solid rgba(255, 255, 255, 0.2) !important;
border-radius: 20px !important;
box-shadow:
0 8px 32px rgba(0, 0, 0, 0.1),
inset 0 1px 0 rgba(255, 255, 255, 0.2) !important;
/* Removed backdrop-filter and transforms that break dropdown positioning */
}
.ultra-glass {
background: rgba(255, 255, 255, 0.15) !important;
border: 1px solid rgba(255, 255, 255, 0.3) !important;
border-radius: 24px !important;
box-shadow:
0 12px 40px rgba(0, 0, 0, 0.15),
inset 0 1px 0 rgba(255, 255, 255, 0.3) !important;
/* Removed backdrop-filter that interferes with dropdown positioning */
}
/* Premium Header */
.hero-header {
background: linear-gradient(135deg,
rgba(124, 58, 237, 0.9) 0%,
rgba(236, 72, 153, 0.9) 50%,
rgba(59, 130, 246, 0.9) 100%) !important;
backdrop-filter: blur(20px) !important;
border: 1px solid rgba(255, 255, 255, 0.2) !important;
border-radius: 24px !important;
box-shadow:
0 20px 60px rgba(124, 58, 237, 0.3),
inset 0 1px 0 rgba(255, 255, 255, 0.2) !important;
position: relative;
overflow: hidden;
}
.hero-header::before {
content: '';
position: absolute;
top: 0;
left: -100%;
width: 100%;
height: 100%;
background: linear-gradient(90deg,
transparent,
rgba(255, 255, 255, 0.2),
transparent);
animation: shimmer 3s infinite;
}
@keyframes shimmer {
0% { left: -100%; }
50% { left: 100%; }
100% { left: 100%; }
}
/* Premium Buttons */
.generate-btn {
background: linear-gradient(135deg,
#667eea 0%,
#764ba2 50%,
#f093fb 100%) !important;
border: none !important;
color: white !important;
font-weight: 700 !important;
font-size: 1.1rem !important;
padding: 1rem 3rem !important;
border-radius: 16px !important;
box-shadow:
0 8px 32px rgba(102, 126, 234, 0.4),
inset 0 1px 0 rgba(255, 255, 255, 0.2) !important;
transition: all 0.4s cubic-bezier(0.175, 0.885, 0.32, 1.275) !important;
position: relative;
overflow: hidden;
}
.generate-btn::before {
content: '';
position: absolute;
top: 0;
left: -100%;
width: 100%;
height: 100%;
background: linear-gradient(90deg,
transparent,
rgba(255, 255, 255, 0.3),
transparent);
transition: left 0.5s;
}
.generate-btn:hover::before {
left: 100%;
}
.generate-btn:hover {
transform: translateY(-4px) scale(1.02) !important;
box-shadow:
0 16px 48px rgba(102, 126, 234, 0.6),
inset 0 1px 0 rgba(255, 255, 255, 0.3) !important;
}
.generate-btn:active {
transform: translateY(-2px) scale(1.01) !important;
}
/* Section Headers */
.section-header {
background: linear-gradient(135deg,
rgba(255, 255, 255, 0.9) 0%,
rgba(248, 250, 252, 0.9) 100%) !important;
backdrop-filter: blur(10px) !important;
border: 1px solid rgba(255, 255, 255, 0.4) !important;
border-radius: 16px !important;
padding: 1.5rem !important;
margin-bottom: 1.5rem !important;
box-shadow:
0 4px 20px rgba(0, 0, 0, 0.08),
inset 0 1px 0 rgba(255, 255, 255, 0.4) !important;
}
/* Premium Inputs - Simplified for Dropdown Compatibility */
input[type="text"],
input[type="number"],
textarea {
background: rgba(255, 255, 255, 0.9) !important;
border: 1px solid rgba(255, 255, 255, 0.3) !important;
border-radius: 12px !important;
padding: 0.75rem 1rem !important;
font-weight: 500 !important;
transition: all 0.3s ease !important;
}
input[type="text"]:focus,
input[type="number"]:focus,
textarea:focus {
background: rgba(255, 255, 255, 0.95) !important;
border-color: rgba(124, 58, 237, 0.5) !important;
box-shadow:
0 0 0 4px rgba(124, 58, 237, 0.1),
0 4px 20px rgba(124, 58, 237, 0.2) !important;
}
/* CRITICAL: Reset all problematic CSS for dropdowns */
label:has(+ [data-testid="dropdown"]),
div:has([data-testid="dropdown"]),
[data-testid="dropdown"],
[data-testid="dropdown"] *,
.gradio-dropdown,
.gradio-dropdown * {
position: static !important;
transform: none !important;
backdrop-filter: none !important;
filter: none !important;
}
/* AGGRESSIVE FIX: Override ALL possible transparency sources */
* {
--dropdown-bg: #ffffff !important;
--dropdown-opacity: 1 !important;
}
/* Target every possible dropdown element with maximum specificity */
.gradio-container [data-testid="dropdown"] div[role="listbox"],
.gradio-container .gradio-dropdown .dropdown-content,
.gradio-container .dropdown-menu,
.gradio-container div[role="listbox"],
.gradio-container .svelte-1gfkn6j,
body [data-testid="dropdown"] div[role="listbox"],
body .dropdown-menu,
body div[role="listbox"],
html [data-testid="dropdown"] div[role="listbox"] {
background: #ffffff !important;
background-color: #ffffff !important;
opacity: 1 !important;
position: absolute !important;
z-index: 99999 !important;
border: 2px solid #d1d5db !important;
border-radius: 8px !important;
box-shadow: 0 8px 24px rgba(0, 0, 0, 0.25) !important;
max-height: 200px !important;
overflow-y: auto !important;
backdrop-filter: none !important;
filter: none !important;
background-image: none !important;
background-blend-mode: normal !important;
/* Force solid with CSS variables */
background: var(--dropdown-bg, #ffffff) !important;
opacity: var(--dropdown-opacity, 1) !important;
}
/* Aggressive option styling */
.gradio-container [data-testid="dropdown"] div[role="listbox"] > *,
.gradio-container .dropdown-menu > *,
.gradio-container div[role="listbox"] > *,
body [data-testid="dropdown"] div[role="listbox"] > *,
body .dropdown-menu > *,
body div[role="listbox"] > * {
background: #ffffff !important;
background-color: #ffffff !important;
padding: 0.75rem 1rem !important;
color: #1f2937 !important;
cursor: pointer !important;
opacity: 1 !important;
border: none !important;
margin: 0 !important;
display: block !important;
width: 100% !important;
text-align: left !important;
}
/* Ensure dropdown menus appear correctly with SOLID background */
[data-testid="dropdown"] div[role="listbox"],
.gradio-dropdown .dropdown-content,
.dropdown-menu,
div[role="listbox"],
.svelte-1gfkn6j,
.gradio-container div[role="listbox"] {
position: absolute !important;
z-index: 9999 !important;
background: #ffffff !important;
background-color: #ffffff !important;
opacity: 1 !important;
border: 1px solid #d1d5db !important;
border-radius: 8px !important;
box-shadow: 0 4px 16px rgba(0, 0, 0, 0.15) !important;
max-height: 200px !important;
overflow-y: auto !important;
backdrop-filter: none !important;
/* Force solid background */
background-image: none !important;
background-blend-mode: normal !important;
}
/* Dropdown option styling - SOLID background for each option */
[data-testid="dropdown"] div[role="listbox"] > *,
.dropdown-menu > *,
div[role="listbox"] > *,
.svelte-1gfkn6j > * {
background: #ffffff !important;
background-color: #ffffff !important;
padding: 0.5rem 0.75rem !important;
color: #374151 !important;
cursor: pointer !important;
transition: background-color 0.2s ease !important;
opacity: 1 !important;
}
/* Dropdown option hover effect */
[data-testid="dropdown"] div[role="listbox"] > *:hover,
.dropdown-menu > *:hover,
div[role="listbox"] > *:hover {
background: #f3f4f6 !important;
color: #1f2937 !important;
}
/* Dropdown option selected state */
[data-testid="dropdown"] div[role="listbox"] > *[aria-selected="true"],
.dropdown-menu > *.selected,
div[role="listbox"] > *[aria-selected="true"] {
background: #e0e7ff !important;
color: #3730a3 !important;
}
/* Code Areas - Ultra Premium Styling */
.code-container {
background: linear-gradient(145deg,
rgba(15, 23, 42, 0.98) 0%,
rgba(30, 41, 59, 0.95) 50%,
rgba(15, 23, 42, 0.98) 100%) !important;
backdrop-filter: blur(30px) !important;
border: 2px solid transparent !important;
background-clip: padding-box !important;
border-radius: 20px !important;
position: relative !important;
overflow: hidden !important;
box-shadow:
0 20px 60px rgba(0, 0, 0, 0.4),
0 8px 32px rgba(15, 23, 42, 0.3),
inset 0 1px 0 rgba(255, 255, 255, 0.1),
inset 0 -1px 0 rgba(71, 85, 105, 0.2) !important;
}
.code-container::before {
content: '';
position: absolute;
top: 0;
left: 0;
right: 0;
bottom: 0;
background: linear-gradient(45deg,
rgba(99, 102, 241, 0.1) 0%,
rgba(139, 92, 246, 0.1) 25%,
rgba(59, 130, 246, 0.1) 50%,
rgba(139, 92, 246, 0.1) 75%,
rgba(99, 102, 241, 0.1) 100%) !important;
border-radius: 20px !important;
z-index: -1 !important;
animation: code-shimmer 3s ease-in-out infinite !important;
}
@keyframes code-shimmer {
0%, 100% { opacity: 0.3; }
50% { opacity: 0.6; }
}
/* Code editor styling */
.code-container .cm-editor {
background: transparent !important;
border-radius: 16px !important;
font-family: 'SF Mono', 'Monaco', 'Inconsolata', 'Roboto Mono', 'Fira Code', monospace !important;
font-size: 13px !important;
line-height: 1.6 !important;
}
.code-container .cm-focused {
outline: none !important;
box-shadow: 0 0 0 2px rgba(99, 102, 241, 0.4) !important;
}
.code-container .cm-content {
padding: 1.5rem !important;
color: #e2e8f0 !important;
}
.code-container .cm-line {
padding-left: 0.5rem !important;
}
/* Syntax highlighting for Python */
.code-container .cm-keyword { color: #f472b6 !important; }
.code-container .cm-string { color: #34d399 !important; }
.code-container .cm-comment { color: #94a3b8 !important; font-style: italic !important; }
.code-container .cm-number { color: #fbbf24 !important; }
.code-container .cm-variable { color: #60a5fa !important; }
.code-container .cm-function { color: #a78bfa !important; }
.code-container .cm-operator { color: #fb7185 !important; }
/* Code header styling */
.code-container label {
background: linear-gradient(90deg,
rgba(99, 102, 241, 0.9) 0%,
rgba(139, 92, 246, 0.9) 50%,
rgba(59, 130, 246, 0.9) 100%) !important;
color: white !important;
padding: 1rem 1.5rem !important;
border-radius: 16px 16px 0 0 !important;
font-weight: 600 !important;
font-size: 1rem !important;
letter-spacing: 0.025em !important;
text-shadow: 0 2px 4px rgba(0, 0, 0, 0.3) !important;
margin: 0 !important;
border: none !important;
box-shadow: 0 4px 12px rgba(99, 102, 241, 0.2) !important;
}
/* Custom scrollbar for code area */
.code-container .cm-scroller::-webkit-scrollbar {
width: 8px !important;
height: 8px !important;
}
.code-container .cm-scroller::-webkit-scrollbar-track {
background: rgba(15, 23, 42, 0.3) !important;
border-radius: 4px !important;
}
.code-container .cm-scroller::-webkit-scrollbar-thumb {
background: linear-gradient(135deg,
rgba(99, 102, 241, 0.6) 0%,
rgba(139, 92, 246, 0.6) 100%) !important;
border-radius: 4px !important;
border: 1px solid rgba(255, 255, 255, 0.1) !important;
}
.code-container .cm-scroller::-webkit-scrollbar-thumb:hover {
background: linear-gradient(135deg,
rgba(99, 102, 241, 0.8) 0%,
rgba(139, 92, 246, 0.8) 100%) !important;
}
/* Line numbers styling */
.code-container .cm-lineNumbers {
background: rgba(15, 23, 42, 0.3) !important;
color: rgba(148, 163, 184, 0.6) !important;
border-right: 1px solid rgba(71, 85, 105, 0.3) !important;
padding-right: 0.5rem !important;
}
.code-container .cm-lineNumbers .cm-gutterElement {
color: rgba(148, 163, 184, 0.5) !important;
font-weight: 500 !important;
}
/* Memory Analysis Cards */
.memory-card {
background: linear-gradient(135deg,
rgba(251, 191, 36, 0.1) 0%,
rgba(245, 158, 11, 0.1) 100%) !important;
backdrop-filter: blur(15px) !important;
border: 1px solid rgba(251, 191, 36, 0.2) !important;
border-radius: 16px !important;
padding: 1.5rem !important;
box-shadow:
0 8px 32px rgba(245, 158, 11, 0.1),
inset 0 1px 0 rgba(255, 255, 255, 0.2) !important;
}
/* Labels with icons */
label {
font-weight: 600 !important;
color: rgba(30, 41, 59, 0.9) !important;
font-size: 0.95rem !important;
}
/* Floating Animation */
@keyframes float {
0%, 100% { transform: translateY(0px); }
50% { transform: translateY(-10px); }
}
.floating {
animation: float 6s ease-in-out infinite;
}
/* Pulse Effect */
@keyframes pulse-glow {
0%, 100% {
box-shadow:
0 8px 32px rgba(102, 126, 234, 0.4),
inset 0 1px 0 rgba(255, 255, 255, 0.2);
}
50% {
box-shadow:
0 12px 48px rgba(102, 126, 234, 0.6),
inset 0 1px 0 rgba(255, 255, 255, 0.3);
}
}
.pulse-glow {
animation: pulse-glow 3s ease-in-out infinite;
}
/* FINAL OVERRIDE: Nuclear option for dropdown transparency */
[role="listbox"] {
background: white !important;
opacity: 1 !important;
}
[role="listbox"] > * {
background: white !important;
opacity: 1 !important;
}
/* Gradio-specific nuclear option */
.gradio-app [role="listbox"],
.gradio-app [role="listbox"] > * {
background: #ffffff !important;
background-color: #ffffff !important;
opacity: 1 !important;
}
/* Last resort: override all possible transparent backgrounds */
div[style*="background"] {
background: unset !important;
}
[role="listbox"][style*="background"] {
background: #ffffff !important;
}
/* Mobile Responsive Styles */
@media (max-width: 768px) {
.main-container {
margin: 0 1px !important;
padding: 1rem !important;
max-width: calc(100% - 2px) !important;
}
.gradio-container {
margin: 0 1px !important;
padding: 0 !important;
}
/* Set left/right margins to 1px for mobile */
.gradio-container > * {
margin-left: 1px !important;
margin-right: 1px !important;
}
/* Adjust hero header for mobile */
.hero-header {
padding: 2rem 1rem !important;
margin-bottom: 2rem !important;
}
.hero-header h1 {
font-size: 2.5rem !important;
}
.hero-header h2 {
font-size: 1.4rem !important;
}
/* Mobile-friendly glass panels */
.glass-panel {
margin: 0.5rem 0 !important;
padding: 1rem !important;
border-radius: 12px !important;
}
/* Responsive button sizing */
.primary-button {
padding: 0.8rem 2rem !important;
font-size: 1rem !important;
}
/* Mobile code container */
.code-container {
margin: 0 !important;
border-radius: 8px !important;
}
/* Stack columns on mobile */
.gradio-row {
flex-direction: column !important;
}
}
/* Small mobile devices */
@media (max-width: 480px) {
.main-container {
margin: 0 1px !important;
padding: 0.5rem !important;
}
.hero-header {
padding: 1.5rem 0.5rem !important;
}
.hero-header h1 {
font-size: 2rem !important;
}
.hero-header h2 {
font-size: 1.2rem !important;
}
.glass-panel {
padding: 0.8rem !important;
margin: 0.25rem 0 !important;
}
}
"""
) as interface:
with gr.Column(elem_classes="main-container"):
# Ultra Premium Header
with gr.Row():
with gr.Column(scale=1):
gr.HTML("""
<div class="hero-header floating" style="text-align: center; padding: 3rem 2rem; margin-bottom: 3rem; position: relative;">
<div style="position: relative; z-index: 2;">
<h1 style="color: white; font-size: 3.5rem; margin: 0; font-weight: 800; text-shadow: 0 4px 8px rgba(0,0,0,0.3); letter-spacing: -0.02em; background: linear-gradient(135deg, #ffffff 0%, #f8fafc 50%, #e2e8f0 100%); -webkit-background-clip: text; -webkit-text-fill-color: transparent; background-clip: text;">
✨ Auto-Diffusers
</h1>
<h2 style="color: rgba(255,255,255,0.95); font-size: 1.8rem; margin: 0.5rem 0 1rem 0; font-weight: 600; text-shadow: 0 2px 4px rgba(0,0,0,0.2);">
Code Generator
</h2>
<p style="color: rgba(255,255,255,0.9); font-size: 1.2rem; margin: 0; font-weight: 400; text-shadow: 0 2px 4px rgba(0,0,0,0.2); max-width: 600px; margin: 0 auto; line-height: 1.6;">
Generate stunning, optimized diffusers code tailored perfectly for your hardware using advanced AI
</p>
<div style="margin-top: 2rem;">
<span style="display: inline-block; background: rgba(255,255,255,0.2); padding: 0.5rem 1rem; border-radius: 20px; color: white; font-size: 0.9rem; backdrop-filter: blur(10px); border: 1px solid rgba(255,255,255,0.3);">
🤖 Powered by Google Gemini 2.5
</span>
</div>
</div>
</div>
""")
# Main Content Area
# Hardware Selection Section
with gr.Group(elem_classes="glass-card"):
gr.HTML("""
<div class="section-header" style="text-align: center;">
<h3 style="margin: 0 0 0.5rem 0; color: #1e293b; font-size: 1.5rem; font-weight: 700;">
⚙️ Hardware Specifications
</h3>
<p style="margin: 0; color: #64748b; font-size: 1rem; font-weight: 500;">
Configure your system hardware for optimal code generation
</p>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
platform = gr.Dropdown(
choices=["Linux", "Darwin", "Windows"],
label="🖥️ Platform",
value="Linux",
info="Your operating system"
)
gpu_vendor = gr.Dropdown(
choices=[
"Custom (Manual Input)",
"NVIDIA Consumer (GeForce RTX)",
"NVIDIA Professional (RTX A-Series)",
"NVIDIA Data Center",
"Apple Silicon",
"AMD",
"Intel",
"CPU Only"
],
label="🎮 GPU Vendor/Category",
value="Custom (Manual Input)",
info="Select your GPU category"
)
gpu_series = gr.Dropdown(
choices=[],
label="📊 GPU Series",
visible=False,
interactive=True,
info="Choose your GPU series"
)
gpu_model = gr.Dropdown(
choices=[],
label="🔧 GPU Model",
visible=False,
interactive=True,
info="Select your specific GPU model"
)
gpu_name_custom = gr.Textbox(
label="💾 Custom GPU Name",
placeholder="e.g., RTX 4090, GTX 1080 Ti",
visible=True,
info="Enter your GPU name manually"
)
gpu_name = gr.Textbox(
label="Selected GPU",
visible=False
)
with gr.Column(scale=1):
vram_gb = gr.Number(
label="🎯 VRAM/Memory (GB)",
value=8,
minimum=0,
maximum=200,
info="GPU memory available"
)
ram_gb = gr.Number(
label="💻 System RAM (GB)",
value=16,
minimum=4,
maximum=256,
info="Total system memory"
)
# Model Configuration Section
with gr.Group(elem_classes="glass-card"):
gr.HTML("""
<div class="section-header" style="text-align: center;">
<h3 style="margin: 0 0 0.5rem 0; color: #1e293b; font-size: 1.5rem; font-weight: 700;">
🤖 Model Configuration
</h3>
<p style="margin: 0; color: #64748b; font-size: 1rem; font-weight: 500;">
Configure the AI model and generation parameters
</p>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
model_name = gr.Textbox(
label="🏷️ Model Name",
value="black-forest-labs/FLUX.1-schnell",
placeholder="e.g., black-forest-labs/FLUX.1-schnell",
info="HuggingFace model identifier"
)
dtype_selection = gr.Dropdown(
choices=["Auto (Let AI decide)", "torch.float32", "torch.float16", "torch.bfloat16"],
label="⚡ Data Type (dtype)",
value="Auto (Let AI decide)",
info="Precision mode - Auto is recommended"
)
with gr.Column(scale=1):
with gr.Row():
width = gr.Number(
label="📏 Width (px)",
value=1360,
minimum=256,
maximum=2048,
step=64,
info="Image width"
)
height = gr.Number(
label="📐 Height (px)",
value=768,
minimum=256,
maximum=2048,
step=64,
info="Image height"
)
inference_steps = gr.Number(
label="🔄 Inference Steps",
value=4,
minimum=1,
maximum=50,
info="Number of denoising steps (higher = better quality, slower)"
)
# Memory Analysis Section
with gr.Group(elem_classes="ultra-glass"):
gr.HTML("""
<div class="section-header" style="text-align: center;">
<h3 style="margin: 0 0 0.5rem 0; color: #1e293b; font-size: 1.5rem; font-weight: 700;">
🧠 Memory Analysis
</h3>
<p style="margin: 0; color: #64748b; font-size: 1rem; font-weight: 500;">
Real-time analysis of model memory requirements and optimization strategies
</p>
</div>
""")
memory_analysis_output = gr.Markdown(
value="✨ Select a model and configure your hardware to see memory requirements and optimization recommendations.",
elem_classes="memory-card"
)
# Generate Button
with gr.Row():
with gr.Column():
gr.HTML("""
<div style="text-align: center; margin: 2rem 0;">
</div>
""")
generate_btn = gr.Button(
"✨ Generate Optimized Code",
variant="primary",
size="lg",
elem_classes="generate-btn pulse-glow"
)
# Generated Code Section
with gr.Group(elem_classes="ultra-glass"):
gr.HTML("""
<div class="section-header" style="text-align: center; position: relative; overflow: hidden;">
<div style="position: absolute; top: 0; left: 0; right: 0; bottom: 0; background: linear-gradient(45deg, rgba(99, 102, 241, 0.1), rgba(139, 92, 246, 0.1)); border-radius: 16px; z-index: -1;"></div>
<h3 style="margin: 0 0 0.5rem 0; color: #1e293b; font-size: 1.5rem; font-weight: 700; text-shadow: 0 2px 4px rgba(0,0,0,0.1);">
💻 Generated Code
</h3>
<p style="margin: 0; color: #64748b; font-size: 1rem; font-weight: 500;">
✨ Ultra-optimized Python code with hardware-specific acceleration
</p>
<div style="margin-top: 1rem; padding: 0.75rem 1.5rem; background: linear-gradient(90deg, rgba(34, 197, 94, 0.1), rgba(59, 130, 246, 0.1)); border-radius: 12px; border: 1px solid rgba(34, 197, 94, 0.2);">
<span style="color: #059669; font-weight: 600; font-size: 0.9rem;">
🚀 Ready-to-run • Memory optimized • Performance tuned
</span>
</div>
</div>
""")
# Code Summary
code_summary = gr.Markdown(
value="🎯 Generated code summary will appear here after generation.",
elem_classes="memory-card"
)
# Code Output
code_output = gr.Code(
label="🚀 Hardware-Optimized Diffusion Pipeline",
language="python",
lines=20,
interactive=True,
show_label=True,
elem_classes="code-container",
value="# 🎨 Your optimized diffusion code will appear here after generation\n# Click 'Generate Optimized Code' to create hardware-specific Python code\n\nprint('✨ Ready to generate amazing AI art with optimized performance!')"
)
def on_gpu_vendor_change(vendor):
"""Handle GPU vendor selection and update series dropdown."""
if vendor == "Custom (Manual Input)":
return (gr.update(visible=True),
gr.update(visible=False, choices=[]),
gr.update(visible=False, choices=[]),
"", gr.update())
elif vendor == "CPU Only":
return (gr.update(visible=False),
gr.update(visible=False, choices=[]),
gr.update(visible=False, choices=[]),
"", 0)
elif vendor == "NVIDIA Consumer (GeForce RTX)":
return (gr.update(visible=False),
gr.update(visible=True, choices=["RTX 50 Series", "RTX 40 Series", "RTX 30 Series"]),
gr.update(visible=False, choices=[]),
"", gr.update())
elif vendor == "NVIDIA Professional (RTX A-Series)":
return (gr.update(visible=False),
gr.update(visible=True, choices=["RTX A6000 Series", "RTX A5000 Series", "RTX A4000 Series"]),
gr.update(visible=False, choices=[]),
"", gr.update())
elif vendor == "NVIDIA Data Center":
return (gr.update(visible=False),
gr.update(visible=True, choices=["Blackwell (B-Series)", "Hopper (H-Series)", "Ada Lovelace (L-Series)", "Ampere (A-Series)", "Volta/Tesla"]),
gr.update(visible=False, choices=[]),
"", gr.update())
elif vendor == "Apple Silicon":
return (gr.update(visible=False),
gr.update(visible=True, choices=["M4 Series", "M3 Series", "M2 Series", "M1 Series"]),
gr.update(visible=False, choices=[]),
"", gr.update())
elif vendor == "AMD":
return (gr.update(visible=False),
gr.update(visible=True, choices=["Radeon RX 7000", "Radeon RX 6000", "Instinct MI Series"]),
gr.update(visible=False, choices=[]),
"", gr.update())
elif vendor == "Intel":
return (gr.update(visible=False),
gr.update(visible=True, choices=["Arc A-Series"]),
gr.update(visible=False, choices=[]),
"", gr.update())
else:
return (gr.update(visible=True),
gr.update(visible=False, choices=[]),
gr.update(visible=False, choices=[]),
"", gr.update())
def on_gpu_series_change(vendor, series):
"""Handle GPU series selection and update model dropdown."""
models = []
if vendor == "NVIDIA Consumer (GeForce RTX)":
if series == "RTX 50 Series":
models = ["RTX 5090 (32GB)", "RTX 5080 (16GB)", "RTX 5070 Ti (16GB)", "RTX 5070 (12GB)", "RTX 5060 Ti (16GB)", "RTX 5060 (12GB)"]
elif series == "RTX 40 Series":
models = ["RTX 4090 (24GB)", "RTX 4080 Super (16GB)", "RTX 4070 Ti Super (16GB)", "RTX 4070 Super (12GB)", "RTX 4070 (12GB)", "RTX 4060 Ti (16GB)", "RTX 4060 Ti (8GB)", "RTX 4060 (8GB)"]
elif series == "RTX 30 Series":
models = ["RTX 3090 Ti (24GB)", "RTX 3090 (24GB)", "RTX 3080 Ti (12GB)", "RTX 3080 (12GB)", "RTX 3080 (10GB)", "RTX 3070 Ti (8GB)", "RTX 3070 (8GB)", "RTX 3060 Ti (8GB)", "RTX 3060 (12GB)"]
elif vendor == "NVIDIA Professional (RTX A-Series)":
if series == "RTX A6000 Series":
models = ["RTX A6000 (48GB)", "RTX A6000 Ada (48GB)", "RTX 6000 Ada (48GB)"]
elif series == "RTX A5000 Series":
models = ["RTX A5000 (24GB)", "RTX A5500 (24GB)", "RTX 5000 Ada (32GB)"]
elif series == "RTX A4000 Series":
models = ["RTX A4000 (16GB)", "RTX A4500 (20GB)", "RTX 4000 Ada (20GB)", "RTX 4000 SFF Ada (20GB)"]
elif vendor == "NVIDIA Data Center":
if series == "Blackwell (B-Series)":
models = ["B200 (192GB)", "B100 (192GB)", "GB200 NVL72 (192GB per GPU)"]
elif series == "Hopper (H-Series)":
models = ["H200 (141GB)", "H100 SXM (80GB)", "H100 PCIe (80GB)"]
elif series == "Ada Lovelace (L-Series)":
models = ["L40S (48GB)", "L40 (48GB)", "L4 (24GB)"]
elif series == "Ampere (A-Series)":
models = ["A100 SXM (80GB)", "A100 PCIe (80GB)", "A100 PCIe (40GB)", "A40 (48GB)", "A30 (24GB)", "A16 (16GB)", "A10 (24GB)"]
elif series == "Volta/Tesla":
models = ["V100 SXM2 (32GB)", "V100 PCIe (16GB)", "P100 (16GB)"]
elif vendor == "Apple Silicon":
if series == "M4 Series":
models = ["M4 Max (128GB Unified)", "M4 Pro (64GB Unified)", "M4 (32GB Unified)"]
elif series == "M3 Series":
models = ["M3 Ultra (192GB Unified)", "M3 Max (128GB Unified)", "M3 Pro (36GB Unified)", "M3 (24GB Unified)"]
elif series == "M2 Series":
models = ["M2 Ultra (192GB Unified)", "M2 Max (96GB Unified)", "M2 Pro (32GB Unified)", "M2 (24GB Unified)"]
elif series == "M1 Series":
models = ["M1 Ultra (128GB Unified)", "M1 Max (64GB Unified)", "M1 Pro (32GB Unified)", "M1 (16GB Unified)"]
elif vendor == "AMD":
if series == "Radeon RX 7000":
models = ["RX 7900 XTX (24GB)", "RX 7900 XT (20GB)"]
elif series == "Radeon RX 6000":
models = ["RX 6900 XT (16GB)"]
elif series == "Instinct MI Series":
models = ["Instinct MI300X (192GB)", "Instinct MI250X (128GB)", "Instinct MI100 (32GB)"]
elif vendor == "Intel":
if series == "Arc A-Series":
models = ["Arc A770 (16GB)", "Arc A750 (8GB)"]
return gr.update(visible=True, choices=models)
def on_gpu_model_change(model):
"""Handle GPU model selection and auto-fill values."""
if not model or model == "":
return "", gr.update()
# Extract GPU name and VRAM from model
if "(" in model and "GB" in model:
gpu_name_part = model.split(" (")[0]
vram_part = model.split("(")[1].split("GB")[0]
try:
vram_value = int(vram_part)
except:
vram_value = 8
return gpu_name_part, vram_value
else:
return model, gr.update()
def get_final_gpu_name(vendor, series, model, custom_name):
"""Get the final GPU name based on vendor selection or custom input."""
if vendor == "Custom (Manual Input)":
return custom_name
elif vendor == "CPU Only":
return ""
elif model and "(" in model and "GB" in model:
return model.split(" (")[0]
elif model:
return model
else:
return custom_name
def update_memory_analysis(model_name, vram_gb):
"""Update memory analysis in real-time based on selections."""
if not model_name or not model_name.strip():
return "Select a model to see memory requirements."
if not vram_gb or vram_gb <= 0:
return f"**Model:** {model_name}\n\nConfigure your GPU to see memory analysis."
try:
memory_info, recommendations, formatted_info = app.analyze_model_memory(model_name, vram_gb)
return formatted_info
except Exception as e:
# Enhanced error reporting with full traceback
import traceback
error_details = traceback.format_exc()
print(f"Memory analysis error for {model_name}: {error_details}")
# More specific error messages
error_msg = str(e)
if "Too many arguments" in error_msg:
detailed_error = f"❌ **HuggingFace API Error**\n\nModel: `{model_name}`\n\n**Issue:** The model repository might not exist or is private.\n\n**Details:** {error_msg}\n\n**Suggestion:** Check the model name spelling and ensure it's a public model on HuggingFace."
elif "404" in error_msg or "not found" in error_msg.lower():
detailed_error = f"❌ **Model Not Found**\n\nModel: `{model_name}`\n\n**Issue:** This model doesn't exist on HuggingFace.\n\n**Suggestion:** Verify the model name is correct (e.g., 'black-forest-labs/FLUX.1-schnell')."
elif "403" in error_msg or "private" in error_msg.lower():
detailed_error = f"❌ **Access Denied**\n\nModel: `{model_name}`\n\n**Issue:** This model is private or requires authentication.\n\n**Suggestion:** Use a public model or check access permissions."
elif "timeout" in error_msg.lower():
detailed_error = f"❌ **Timeout Error**\n\nModel: `{model_name}`\n\n**Issue:** HuggingFace API is slow or unresponsive.\n\n**Suggestion:** Try again in a moment."
else:
detailed_error = f"❌ **Memory Analysis Error**\n\nModel: `{model_name}`\n\n**Error Type:** {type(e).__name__}\n\n**Details:** {error_msg}\n\n**Full Error:**\n```\n{error_details}\n```"
return detailed_error
# Connect GPU dropdown change handlers with memory analysis updates
gpu_vendor.change(
on_gpu_vendor_change,
inputs=[gpu_vendor],
outputs=[gpu_name_custom, gpu_series, gpu_model, gpu_name, vram_gb]
).then(
update_memory_analysis,
inputs=[model_name, vram_gb],
outputs=memory_analysis_output
)
gpu_series.change(
on_gpu_series_change,
inputs=[gpu_vendor, gpu_series],
outputs=[gpu_model]
)
gpu_model.change(
on_gpu_model_change,
inputs=[gpu_model],
outputs=[gpu_name, vram_gb]
).then(
update_memory_analysis,
inputs=[model_name, vram_gb],
outputs=memory_analysis_output
)
# Update memory analysis when custom GPU name changes
gpu_name_custom.change(
update_memory_analysis,
inputs=[model_name, vram_gb],
outputs=memory_analysis_output
)
# Update memory analysis when model name or VRAM changes
model_name.change(
update_memory_analysis,
inputs=[model_name, vram_gb],
outputs=memory_analysis_output
)
vram_gb.change(
update_memory_analysis,
inputs=[model_name, vram_gb],
outputs=memory_analysis_output
)
# Load initial memory analysis on startup
interface.load(
update_memory_analysis,
inputs=[model_name, vram_gb],
outputs=memory_analysis_output
)
def create_code_summary(generated_code, model_name, final_gpu_name, vram_gb):
"""Create a concise summary of the generated code."""
if generated_code.startswith("Error"):
return "❌ **Code Generation Failed** - See error details in the code output below."
# Analyze the generated code to extract key optimizations
optimizations = []
if "torch.float16" in generated_code or "fp16" in generated_code.lower():
optimizations.append("FP16 precision")
if "torch.bfloat16" in generated_code or "bf16" in generated_code.lower():
optimizations.append("BF16 precision")
if "enable_model_cpu_offload" in generated_code:
optimizations.append("CPU offloading")
if "enable_sequential_cpu_offload" in generated_code:
optimizations.append("Sequential CPU offload")
if "low_cpu_mem_usage=True" in generated_code:
optimizations.append("Low CPU memory usage")
if "torch.compile" in generated_code:
optimizations.append("Torch compile")
if "attention_slicing" in generated_code:
optimizations.append("Attention slicing")
if "vae_slicing" in generated_code:
optimizations.append("VAE slicing")
device = "CUDA" if "cuda" in generated_code else "MPS" if "mps" in generated_code else "CPU"
summary = f"""
### ✅ Code Generated Successfully
**Model:** `{model_name}`
**Hardware:** {final_gpu_name} ({vram_gb}GB) - {device}
**Optimizations:** {', '.join(optimizations) if optimizations else 'Standard configuration'}
**Key Features:**
- Memory-optimized pipeline loading
- Hardware-specific device configuration
- Performance tuning for your GPU
- Ready-to-run diffusion code
"""
return summary
def strip_comments(code):
"""Remove all comments from the code for collapsed view."""
if not code:
return code
lines = code.split('\n')
filtered_lines = []
for line in lines:
stripped = line.strip()
# Skip comment-only lines and empty lines
if stripped.startswith('#') or stripped == '':
continue
# For lines with inline comments, keep only the code part
if '#' in line and not stripped.startswith('#'):
code_part = line.split('#')[0].rstrip()
if code_part.strip(): # Only add if there's actual code
filtered_lines.append(code_part)
else:
filtered_lines.append(line)
return '\n'.join(filtered_lines)
def generate_with_combined_gpu_name(gpu_vendor, gpu_series, gpu_model, gpu_name_custom, vram_gb, ram_gb, platform, model_name, dtype_selection, width, height, inference_steps):
"""Generate code with the correct GPU name from multi-level selection or custom input, including memory analysis."""
final_gpu_name = get_final_gpu_name(gpu_vendor, gpu_series, gpu_model, gpu_name_custom)
# Constant prompt text
prompt_text = "A cat holding a sign that says hello world"
# STEP 1: Perform memory analysis BEFORE code generation
memory_analysis_data = None
memory_header = ""
try:
if model_name and vram_gb and vram_gb > 0:
memory_info, recommendations, _ = app.analyze_model_memory(model_name, vram_gb)
# Package memory analysis for Gemini API
memory_analysis_data = {
'memory_info': memory_info,
'recommendations': recommendations
}
# Create header for the generated code
def get_optimization_strategy(recommendations):
"""Generate optimization strategy text based on recommendations."""
strategies = []
if recommendations.get('cpu_offload'):
strategies.append("CPU offloading")
if recommendations.get('sequential_offload'):
strategies.append("Sequential CPU offload")
if recommendations.get('attention_slicing'):
strategies.append("Attention slicing")
if recommendations.get('vae_slicing'):
strategies.append("VAE slicing")
precision = recommendations.get('recommended_precision', 'float16')
if precision:
strategies.append(f"{precision} precision")
if not strategies:
# No special optimizations needed
if recommendations.get('recommendations') and any('Full model can fit' in rec for rec in recommendations.get('recommendations', [])):
return "Full VRAM utilization with optimal performance"
else:
return "Standard optimization"
return ", ".join(strategies)
optimization_strategy = get_optimization_strategy(recommendations)
memory_header = f"""# Memory Analysis for {model_name}:
# GPU: {final_gpu_name if final_gpu_name else 'Not specified'} ({vram_gb}GB VRAM)
# Model Memory Requirements: {memory_info.get('estimated_inference_memory_fp16_gb', 'Unknown')} GB
# Recommendation: {', '.join(recommendations.get('recommendations', ['N/A']))}
# Optimization Strategy: {optimization_strategy}
"""
except Exception as e:
memory_header = f"""# Memory Analysis for {model_name}:
# GPU: {final_gpu_name if final_gpu_name else 'Not specified'} ({vram_gb}GB VRAM)
# Note: Memory analysis failed - {str(e)}
"""
# STEP 2: Generate the optimized code WITH memory analysis information
generated_code = app.generate_code_with_manual_specs(
final_gpu_name, vram_gb, ram_gb, platform,
model_name, prompt_text, dtype_selection, width, height, inference_steps,
memory_analysis_data
)
# STEP 3: Prepend memory analysis header to the generated code
final_code = memory_header + generated_code if memory_header and not generated_code.startswith("Error") else generated_code
# STEP 4: Create code summary
summary = create_code_summary(generated_code, model_name, final_gpu_name, vram_gb)
return summary, final_code
# Add states for tracking code view and storing full code
code_collapsed = gr.State(value=False)
full_code_storage = gr.State(value="")
def generate_and_store_code(gpu_vendor, gpu_series, gpu_model, gpu_name_custom, vram_gb, ram_gb, platform, model_name, dtype_selection, width, height, inference_steps):
"""Generate code and return summary, code for display, and full code for storage."""
summary, full_code = generate_with_combined_gpu_name(
gpu_vendor, gpu_series, gpu_model, gpu_name_custom, vram_gb, ram_gb, platform,
model_name, dtype_selection, width, height, inference_steps
)
return summary, full_code, full_code, False # summary, display_code, stored_code, reset_collapsed_state
generate_btn.click(
generate_and_store_code,
inputs=[
gpu_vendor, gpu_series, gpu_model, gpu_name_custom, vram_gb, ram_gb, platform,
model_name, dtype_selection, width, height, inference_steps
],
outputs=[code_summary, code_output, full_code_storage, code_collapsed]
)
# Ultra Premium Footer
gr.HTML("""
<div class="ultra-glass" style="text-align: center; padding: 3rem 2rem; margin-top: 4rem; position: relative; overflow: hidden;">
<div style="position: relative; z-index: 2;">
<h4 style="color: #1e293b; font-size: 1.3rem; margin: 0 0 1rem 0; font-weight: 700;">
✨ Pro Tips & Insights
</h4>
<p style="color: #475569; font-size: 1rem; margin: 0 0 1.5rem 0; font-weight: 500; line-height: 1.6; max-width: 600px; margin: 0 auto;">
🚀 The generated code includes hardware-specific optimizations for memory efficiency and peak performance<br>
🎯 Fine-tuned for your exact GPU configuration and model requirements
</p>
<div style="margin-top: 2rem;">
<span style="display: inline-block; background: rgba(124, 58, 237, 0.1); padding: 0.75rem 1.5rem; border-radius: 20px; color: #7c3aed; font-size: 0.9rem; backdrop-filter: blur(10px); border: 1px solid rgba(124, 58, 237, 0.2); margin: 0 0.5rem;">
🤖 Powered by Google Gemini 2.5
</span>
<span style="display: inline-block; background: rgba(236, 72, 153, 0.1); padding: 0.75rem 1.5rem; border-radius: 20px; color: #ec4899; font-size: 0.9rem; backdrop-filter: blur(10px); border: 1px solid rgba(236, 72, 153, 0.2); margin: 0 0.5rem;">
❤️ Built for the Community
</span>
</div>
</div>
</div>
""")
return interface
def main():
"""Launch the Gradio application."""
try:
interface = create_gradio_interface()
interface.launch(
server_name="0.0.0.0",
server_port=7860,
share=True,
show_error=True
)
except Exception as e:
print(f"Error launching Gradio app: {e}")
print("Make sure you have set GOOGLE_API_KEY in your .env file")
if __name__ == "__main__":
main() |