Spaces:
Running
Running
Upload folder using huggingface_hub
Browse files- .claude/settings.local.json +3 -1
- auto_diffusers.log +0 -0
- gradio_app.py +340 -323
.claude/settings.local.json
CHANGED
@@ -55,7 +55,9 @@
|
|
55 |
"Bash(rm /Users/deep-diver/Developers/auto-diffusers/optimization_docs.txt)",
|
56 |
"Bash(grep -n -B5 -A15 \"container\\|margin\\|padding\" /Users/deep-diver/Developers/auto-diffusers/gradio_app.py)",
|
57 |
"Bash(grep -n \"\\\"\\\"\\\"\" /Users/deep-diver/Developers/auto-diffusers/gradio_app.py)",
|
58 |
-
"Bash(grep -n '\"\"\"' /Users/deep-diver/Developers/auto-diffusers/gradio_app.py)"
|
|
|
|
|
59 |
],
|
60 |
"deny": []
|
61 |
},
|
|
|
55 |
"Bash(rm /Users/deep-diver/Developers/auto-diffusers/optimization_docs.txt)",
|
56 |
"Bash(grep -n -B5 -A15 \"container\\|margin\\|padding\" /Users/deep-diver/Developers/auto-diffusers/gradio_app.py)",
|
57 |
"Bash(grep -n \"\\\"\\\"\\\"\" /Users/deep-diver/Developers/auto-diffusers/gradio_app.py)",
|
58 |
+
"Bash(grep -n '\"\"\"' /Users/deep-diver/Developers/auto-diffusers/gradio_app.py)",
|
59 |
+
"Bash(timeout 15s python gradio_app.py)",
|
60 |
+
"Bash(grep -n \"gpu_name_custom\" gradio_app.py)"
|
61 |
],
|
62 |
"deny": []
|
63 |
},
|
auto_diffusers.log
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
gradio_app.py
CHANGED
@@ -114,10 +114,10 @@ class GradioAutodiffusers:
|
|
114 |
try:
|
115 |
# Create manual hardware specs
|
116 |
# Parse dtype selection
|
117 |
-
if dtype_selection == "Auto
|
118 |
user_dtype = None
|
119 |
else:
|
120 |
-
user_dtype = dtype_selection
|
121 |
|
122 |
manual_specs = {
|
123 |
'platform': platform,
|
@@ -210,7 +210,7 @@ def create_gradio_interface():
|
|
210 |
.main-container {
|
211 |
max-width: 1400px;
|
212 |
margin: 0 auto;
|
213 |
-
padding:
|
214 |
/* Removed position: relative that can interfere with dropdown positioning */
|
215 |
}
|
216 |
|
@@ -234,20 +234,22 @@ def create_gradio_interface():
|
|
234 |
.glass-card {
|
235 |
background: rgba(255, 255, 255, 0.25) !important;
|
236 |
border: 1px solid rgba(255, 255, 255, 0.2) !important;
|
237 |
-
border-radius:
|
238 |
box-shadow:
|
239 |
0 8px 32px rgba(0, 0, 0, 0.1),
|
240 |
inset 0 1px 0 rgba(255, 255, 255, 0.2) !important;
|
|
|
241 |
/* Removed backdrop-filter and transforms that break dropdown positioning */
|
242 |
}
|
243 |
|
244 |
.ultra-glass {
|
245 |
background: rgba(255, 255, 255, 0.15) !important;
|
246 |
border: 1px solid rgba(255, 255, 255, 0.3) !important;
|
247 |
-
border-radius:
|
248 |
box-shadow:
|
249 |
0 12px 40px rgba(0, 0, 0, 0.15),
|
250 |
inset 0 1px 0 rgba(255, 255, 255, 0.3) !important;
|
|
|
251 |
/* Removed backdrop-filter that interferes with dropdown positioning */
|
252 |
}
|
253 |
|
@@ -259,12 +261,15 @@ def create_gradio_interface():
|
|
259 |
rgba(59, 130, 246, 0.9) 100%) !important;
|
260 |
backdrop-filter: blur(20px) !important;
|
261 |
border: 1px solid rgba(255, 255, 255, 0.2) !important;
|
262 |
-
border-radius:
|
263 |
box-shadow:
|
264 |
0 20px 60px rgba(124, 58, 237, 0.3),
|
265 |
inset 0 1px 0 rgba(255, 255, 255, 0.2) !important;
|
266 |
position: relative;
|
267 |
overflow: hidden;
|
|
|
|
|
|
|
268 |
}
|
269 |
|
270 |
.hero-header::before {
|
@@ -298,7 +303,7 @@ def create_gradio_interface():
|
|
298 |
font-weight: 700 !important;
|
299 |
font-size: 1.1rem !important;
|
300 |
padding: 1rem 3rem !important;
|
301 |
-
border-radius:
|
302 |
box-shadow:
|
303 |
0 8px 32px rgba(102, 126, 234, 0.4),
|
304 |
inset 0 1px 0 rgba(255, 255, 255, 0.2) !important;
|
@@ -495,135 +500,132 @@ def create_gradio_interface():
|
|
495 |
}
|
496 |
|
497 |
|
498 |
-
/* Code Areas -
|
499 |
.code-container {
|
500 |
-
background:
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
backdrop-filter: blur(30px) !important;
|
505 |
-
border: 2px solid transparent !important;
|
506 |
-
background-clip: padding-box !important;
|
507 |
-
border-radius: 20px !important;
|
508 |
-
position: relative !important;
|
509 |
overflow: hidden !important;
|
510 |
-
box-shadow:
|
511 |
-
0 20px 60px rgba(0, 0, 0, 0.4),
|
512 |
-
0 8px 32px rgba(15, 23, 42, 0.3),
|
513 |
-
inset 0 1px 0 rgba(255, 255, 255, 0.1),
|
514 |
-
inset 0 -1px 0 rgba(71, 85, 105, 0.2) !important;
|
515 |
-
}
|
516 |
-
|
517 |
-
.code-container::before {
|
518 |
-
content: '';
|
519 |
-
position: absolute;
|
520 |
-
top: 0;
|
521 |
-
left: 0;
|
522 |
-
right: 0;
|
523 |
-
bottom: 0;
|
524 |
-
background: linear-gradient(45deg,
|
525 |
-
rgba(99, 102, 241, 0.1) 0%,
|
526 |
-
rgba(139, 92, 246, 0.1) 25%,
|
527 |
-
rgba(59, 130, 246, 0.1) 50%,
|
528 |
-
rgba(139, 92, 246, 0.1) 75%,
|
529 |
-
rgba(99, 102, 241, 0.1) 100%) !important;
|
530 |
-
border-radius: 20px !important;
|
531 |
-
z-index: -1 !important;
|
532 |
-
animation: code-shimmer 3s ease-in-out infinite !important;
|
533 |
-
}
|
534 |
-
|
535 |
-
@keyframes code-shimmer {
|
536 |
-
0%, 100% { opacity: 0.3; }
|
537 |
-
50% { opacity: 0.6; }
|
538 |
}
|
539 |
|
540 |
/* Code editor styling */
|
541 |
.code-container .cm-editor {
|
542 |
-
background:
|
543 |
-
border-radius:
|
544 |
font-family: 'SF Mono', 'Monaco', 'Inconsolata', 'Roboto Mono', 'Fira Code', monospace !important;
|
545 |
-
font-size:
|
546 |
-
line-height: 1.
|
547 |
-
}
|
548 |
-
|
549 |
-
.code-container .cm-focused {
|
550 |
-
outline: none !important;
|
551 |
-
box-shadow: 0 0 0 2px rgba(99, 102, 241, 0.4) !important;
|
552 |
}
|
553 |
|
|
|
554 |
.code-container .cm-content {
|
|
|
555 |
padding: 1.5rem !important;
|
556 |
-
color: #
|
|
|
|
|
|
|
|
|
|
|
557 |
}
|
558 |
|
559 |
.code-container .cm-line {
|
560 |
padding-left: 0.5rem !important;
|
|
|
|
|
|
|
561 |
}
|
562 |
|
563 |
-
/*
|
564 |
-
.code-container .cm-
|
565 |
-
|
566 |
-
|
567 |
-
|
568 |
-
|
569 |
-
.code-container .cm-
|
570 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
571 |
|
572 |
/* Code header styling */
|
573 |
.code-container label {
|
574 |
-
background:
|
575 |
-
|
576 |
-
|
577 |
-
|
578 |
-
color: white !important;
|
579 |
-
padding: 1rem 1.5rem !important;
|
580 |
-
border-radius: 16px 16px 0 0 !important;
|
581 |
font-weight: 600 !important;
|
582 |
-
font-size:
|
583 |
-
letter-spacing: 0.025em !important;
|
584 |
-
text-shadow: 0 2px 4px rgba(0, 0, 0, 0.3) !important;
|
585 |
margin: 0 !important;
|
586 |
border: none !important;
|
587 |
-
|
588 |
}
|
589 |
|
590 |
|
591 |
/* Custom scrollbar for code area */
|
592 |
.code-container .cm-scroller::-webkit-scrollbar {
|
593 |
-
width:
|
594 |
-
height:
|
595 |
}
|
596 |
|
597 |
.code-container .cm-scroller::-webkit-scrollbar-track {
|
598 |
-
background: rgba(
|
599 |
-
border-radius:
|
600 |
}
|
601 |
|
602 |
.code-container .cm-scroller::-webkit-scrollbar-thumb {
|
603 |
-
background:
|
604 |
-
|
605 |
-
rgba(139, 92, 246, 0.6) 100%) !important;
|
606 |
-
border-radius: 4px !important;
|
607 |
-
border: 1px solid rgba(255, 255, 255, 0.1) !important;
|
608 |
}
|
609 |
|
610 |
.code-container .cm-scroller::-webkit-scrollbar-thumb:hover {
|
611 |
-
background:
|
612 |
-
rgba(99, 102, 241, 0.8) 0%,
|
613 |
-
rgba(139, 92, 246, 0.8) 100%) !important;
|
614 |
}
|
615 |
|
616 |
/* Line numbers styling */
|
617 |
.code-container .cm-lineNumbers {
|
618 |
-
background: rgba(
|
619 |
-
color: rgba(
|
620 |
-
border-right: 1px solid rgba(
|
621 |
padding-right: 0.5rem !important;
|
622 |
}
|
623 |
|
624 |
.code-container .cm-lineNumbers .cm-gutterElement {
|
625 |
-
color: rgba(
|
626 |
-
font-weight:
|
627 |
}
|
628 |
|
629 |
/* Memory Analysis Cards */
|
@@ -703,6 +705,17 @@ def create_gradio_interface():
|
|
703 |
background: #ffffff !important;
|
704 |
}
|
705 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
706 |
/* Mobile Responsive Styles */
|
707 |
@media (max-width: 768px) {
|
708 |
.main-container {
|
@@ -794,100 +807,50 @@ def create_gradio_interface():
|
|
794 |
|
795 |
with gr.Column(elem_classes="main-container"):
|
796 |
# Ultra Premium Header
|
797 |
-
|
798 |
-
|
799 |
-
|
800 |
-
<
|
801 |
-
|
802 |
-
|
803 |
-
|
804 |
-
|
805 |
-
|
806 |
-
|
807 |
-
|
808 |
-
|
809 |
-
|
810 |
-
|
811 |
-
|
812 |
-
|
813 |
-
🤖 Powered by Google Gemini 2.5
|
814 |
-
</span>
|
815 |
-
</div>
|
816 |
-
</div>
|
817 |
</div>
|
818 |
-
|
|
|
|
|
819 |
|
820 |
# Main Content Area
|
821 |
|
822 |
# Hardware Selection Section
|
823 |
with gr.Group(elem_classes="glass-card"):
|
824 |
-
gr.
|
825 |
-
|
826 |
-
<
|
827 |
-
|
828 |
-
|
829 |
-
|
830 |
-
|
831 |
-
|
832 |
-
|
833 |
-
|
834 |
-
|
835 |
-
with gr.Row():
|
836 |
-
with gr.Column(scale=1):
|
837 |
platform = gr.Dropdown(
|
838 |
choices=["Linux", "Darwin", "Windows"],
|
839 |
label="🖥️ Platform",
|
840 |
value="Linux",
|
841 |
info="Your operating system"
|
842 |
)
|
843 |
-
|
844 |
-
gpu_vendor = gr.Dropdown(
|
845 |
-
choices=[
|
846 |
-
"Custom (Manual Input)",
|
847 |
-
"NVIDIA Consumer (GeForce RTX)",
|
848 |
-
"NVIDIA Professional (RTX A-Series)",
|
849 |
-
"NVIDIA Data Center",
|
850 |
-
"Apple Silicon",
|
851 |
-
"AMD",
|
852 |
-
"Intel",
|
853 |
-
"CPU Only"
|
854 |
-
],
|
855 |
-
label="🎮 GPU Vendor/Category",
|
856 |
-
value="Custom (Manual Input)",
|
857 |
-
info="Select your GPU category"
|
858 |
-
)
|
859 |
-
|
860 |
-
gpu_series = gr.Dropdown(
|
861 |
-
choices=[],
|
862 |
-
label="📊 GPU Series",
|
863 |
-
visible=False,
|
864 |
-
interactive=True,
|
865 |
-
info="Choose your GPU series"
|
866 |
-
)
|
867 |
-
|
868 |
-
gpu_model = gr.Dropdown(
|
869 |
-
choices=[],
|
870 |
-
label="🔧 GPU Model",
|
871 |
-
visible=False,
|
872 |
-
interactive=True,
|
873 |
-
info="Select your specific GPU model"
|
874 |
-
)
|
875 |
-
|
876 |
-
gpu_name_custom = gr.Textbox(
|
877 |
-
label="💾 Custom GPU Name",
|
878 |
-
placeholder="e.g., RTX 4090, GTX 1080 Ti",
|
879 |
-
visible=True,
|
880 |
-
info="Enter your GPU name manually"
|
881 |
-
)
|
882 |
-
|
883 |
-
gpu_name = gr.Textbox(
|
884 |
-
label="Selected GPU",
|
885 |
-
visible=False
|
886 |
-
)
|
887 |
-
|
888 |
-
with gr.Column(scale=1):
|
889 |
vram_gb = gr.Number(
|
890 |
-
label="🎯 VRAM
|
891 |
value=8,
|
892 |
minimum=0,
|
893 |
maximum=200,
|
@@ -901,87 +864,116 @@ def create_gradio_interface():
|
|
901 |
info="Total system memory"
|
902 |
)
|
903 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
904 |
# Model Configuration Section
|
905 |
with gr.Group(elem_classes="glass-card"):
|
906 |
-
gr.
|
907 |
-
|
908 |
-
<
|
909 |
-
|
910 |
-
|
911 |
-
|
912 |
-
|
913 |
-
|
914 |
-
|
915 |
-
|
916 |
-
|
917 |
-
|
918 |
-
|
919 |
-
|
920 |
-
|
921 |
-
|
922 |
-
|
923 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
924 |
)
|
925 |
-
|
926 |
dtype_selection = gr.Dropdown(
|
927 |
-
choices=["Auto
|
928 |
-
label="⚡
|
929 |
-
value="Auto
|
930 |
-
info="Precision mode
|
931 |
)
|
932 |
-
|
933 |
-
with gr.Column(scale=1):
|
934 |
-
with gr.Row():
|
935 |
-
width = gr.Number(
|
936 |
-
label="📏 Width (px)",
|
937 |
-
value=1360,
|
938 |
-
minimum=256,
|
939 |
-
maximum=2048,
|
940 |
-
step=64,
|
941 |
-
info="Image width"
|
942 |
-
)
|
943 |
-
height = gr.Number(
|
944 |
-
label="📐 Height (px)",
|
945 |
-
value=768,
|
946 |
-
minimum=256,
|
947 |
-
maximum=2048,
|
948 |
-
step=64,
|
949 |
-
info="Image height"
|
950 |
-
)
|
951 |
-
|
952 |
inference_steps = gr.Number(
|
953 |
-
label="🔄
|
954 |
value=4,
|
955 |
minimum=1,
|
956 |
maximum=50,
|
957 |
-
info="
|
958 |
)
|
959 |
|
960 |
-
|
961 |
-
|
962 |
-
|
963 |
-
|
964 |
-
|
965 |
-
|
966 |
-
|
967 |
-
|
968 |
-
|
969 |
-
</
|
970 |
-
|
971 |
-
|
|
|
|
|
|
|
|
|
972 |
|
973 |
-
memory_analysis_output = gr.Markdown(
|
974 |
-
value="✨ Select a model and configure your hardware to see memory requirements and optimization recommendations.",
|
975 |
-
elem_classes="memory-card"
|
976 |
-
)
|
977 |
|
978 |
# Generate Button
|
979 |
with gr.Row():
|
980 |
with gr.Column():
|
981 |
-
gr.HTML("""
|
982 |
-
<div style="text-align: center; margin: 2rem 0;">
|
983 |
-
</div>
|
984 |
-
""")
|
985 |
generate_btn = gr.Button(
|
986 |
"✨ Generate Optimized Code",
|
987 |
variant="primary",
|
@@ -991,85 +983,54 @@ def create_gradio_interface():
|
|
991 |
|
992 |
# Generated Code Section
|
993 |
with gr.Group(elem_classes="ultra-glass"):
|
994 |
-
gr.HTML("""
|
995 |
-
<div class="section-header" style="text-align: center; position: relative; overflow: hidden;">
|
996 |
-
<div style="position: absolute; top: 0; left: 0; right: 0; bottom: 0; background: linear-gradient(45deg, rgba(99, 102, 241, 0.1), rgba(139, 92, 246, 0.1)); border-radius: 16px; z-index: -1;"></div>
|
997 |
-
<h3 style="margin: 0 0 0.5rem 0; color: #1e293b; font-size: 1.5rem; font-weight: 700; text-shadow: 0 2px 4px rgba(0,0,0,0.1);">
|
998 |
-
💻 Generated Code
|
999 |
-
</h3>
|
1000 |
-
<p style="margin: 0; color: #64748b; font-size: 1rem; font-weight: 500;">
|
1001 |
-
✨ Ultra-optimized Python code with hardware-specific acceleration
|
1002 |
-
</p>
|
1003 |
-
<div style="margin-top: 1rem; padding: 0.75rem 1.5rem; background: linear-gradient(90deg, rgba(34, 197, 94, 0.1), rgba(59, 130, 246, 0.1)); border-radius: 12px; border: 1px solid rgba(34, 197, 94, 0.2);">
|
1004 |
-
<span style="color: #059669; font-weight: 600; font-size: 0.9rem;">
|
1005 |
-
🚀 Ready-to-run • Memory optimized • Performance tuned
|
1006 |
-
</span>
|
1007 |
-
</div>
|
1008 |
-
</div>
|
1009 |
-
""")
|
1010 |
-
|
1011 |
-
# Code Summary
|
1012 |
-
code_summary = gr.Markdown(
|
1013 |
-
value="🎯 Generated code summary will appear here after generation.",
|
1014 |
-
elem_classes="memory-card"
|
1015 |
-
)
|
1016 |
-
|
1017 |
# Code Output
|
1018 |
code_output = gr.Code(
|
1019 |
-
label="
|
1020 |
language="python",
|
1021 |
lines=20,
|
1022 |
interactive=True,
|
1023 |
show_label=True,
|
1024 |
elem_classes="code-container",
|
1025 |
-
|
|
|
1026 |
)
|
1027 |
|
1028 |
def on_gpu_vendor_change(vendor):
|
1029 |
"""Handle GPU vendor selection and update series dropdown."""
|
1030 |
if vendor == "Custom (Manual Input)":
|
1031 |
-
return (gr.update(visible=
|
1032 |
-
gr.update(visible=False, choices=[]),
|
1033 |
gr.update(visible=False, choices=[]),
|
1034 |
"", gr.update())
|
1035 |
elif vendor == "CPU Only":
|
1036 |
-
return (gr.update(visible=False),
|
1037 |
-
gr.update(visible=False, choices=[]),
|
1038 |
gr.update(visible=False, choices=[]),
|
1039 |
"", 0)
|
1040 |
elif vendor == "NVIDIA Consumer (GeForce RTX)":
|
1041 |
-
return (gr.update(visible=
|
1042 |
-
gr.update(visible=True, choices=["RTX 50 Series", "RTX 40 Series", "RTX 30 Series"]),
|
1043 |
gr.update(visible=False, choices=[]),
|
1044 |
"", gr.update())
|
1045 |
elif vendor == "NVIDIA Professional (RTX A-Series)":
|
1046 |
-
return (gr.update(visible=
|
1047 |
-
gr.update(visible=True, choices=["RTX A6000 Series", "RTX A5000 Series", "RTX A4000 Series"]),
|
1048 |
gr.update(visible=False, choices=[]),
|
1049 |
"", gr.update())
|
1050 |
elif vendor == "NVIDIA Data Center":
|
1051 |
-
return (gr.update(visible=
|
1052 |
-
gr.update(visible=True, choices=["Blackwell (B-Series)", "Hopper (H-Series)", "Ada Lovelace (L-Series)", "Ampere (A-Series)", "Volta/Tesla"]),
|
1053 |
gr.update(visible=False, choices=[]),
|
1054 |
"", gr.update())
|
1055 |
elif vendor == "Apple Silicon":
|
1056 |
-
return (gr.update(visible=
|
1057 |
-
gr.update(visible=True, choices=["M4 Series", "M3 Series", "M2 Series", "M1 Series"]),
|
1058 |
gr.update(visible=False, choices=[]),
|
1059 |
"", gr.update())
|
1060 |
elif vendor == "AMD":
|
1061 |
-
return (gr.update(visible=
|
1062 |
-
gr.update(visible=True, choices=["Radeon RX 7000", "Radeon RX 6000", "Instinct MI Series"]),
|
1063 |
gr.update(visible=False, choices=[]),
|
1064 |
"", gr.update())
|
1065 |
elif vendor == "Intel":
|
1066 |
-
return (gr.update(visible=
|
1067 |
-
gr.update(visible=True, choices=["Arc A-Series"]),
|
1068 |
gr.update(visible=False, choices=[]),
|
1069 |
"", gr.update())
|
1070 |
else:
|
1071 |
-
return (gr.update(visible=
|
1072 |
-
gr.update(visible=False, choices=[]),
|
1073 |
gr.update(visible=False, choices=[]),
|
1074 |
"", gr.update())
|
1075 |
|
@@ -1146,10 +1107,10 @@ def create_gradio_interface():
|
|
1146 |
else:
|
1147 |
return model, gr.update()
|
1148 |
|
1149 |
-
def get_final_gpu_name(vendor, series, model
|
1150 |
-
"""Get the final GPU name based on vendor selection
|
1151 |
if vendor == "Custom (Manual Input)":
|
1152 |
-
return
|
1153 |
elif vendor == "CPU Only":
|
1154 |
return ""
|
1155 |
elif model and "(" in model and "GB" in model:
|
@@ -1157,7 +1118,44 @@ def create_gradio_interface():
|
|
1157 |
elif model:
|
1158 |
return model
|
1159 |
else:
|
1160 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1161 |
|
1162 |
def update_memory_analysis(model_name, vram_gb):
|
1163 |
"""Update memory analysis in real-time based on selections."""
|
@@ -1195,7 +1193,7 @@ def create_gradio_interface():
|
|
1195 |
gpu_vendor.change(
|
1196 |
on_gpu_vendor_change,
|
1197 |
inputs=[gpu_vendor],
|
1198 |
-
outputs=[
|
1199 |
).then(
|
1200 |
update_memory_analysis,
|
1201 |
inputs=[model_name, vram_gb],
|
@@ -1218,12 +1216,6 @@ def create_gradio_interface():
|
|
1218 |
outputs=memory_analysis_output
|
1219 |
)
|
1220 |
|
1221 |
-
# Update memory analysis when custom GPU name changes
|
1222 |
-
gpu_name_custom.change(
|
1223 |
-
update_memory_analysis,
|
1224 |
-
inputs=[model_name, vram_gb],
|
1225 |
-
outputs=memory_analysis_output
|
1226 |
-
)
|
1227 |
|
1228 |
# Update memory analysis when model name or VRAM changes
|
1229 |
model_name.change(
|
@@ -1244,6 +1236,53 @@ def create_gradio_interface():
|
|
1244 |
inputs=[model_name, vram_gb],
|
1245 |
outputs=memory_analysis_output
|
1246 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1247 |
|
1248 |
def create_code_summary(generated_code, model_name, final_gpu_name, vram_gb):
|
1249 |
"""Create a concise summary of the generated code."""
|
@@ -1309,9 +1348,9 @@ def create_gradio_interface():
|
|
1309 |
|
1310 |
return '\n'.join(filtered_lines)
|
1311 |
|
1312 |
-
def generate_with_combined_gpu_name(gpu_vendor, gpu_series, gpu_model,
|
1313 |
-
"""Generate code with the correct GPU name from multi-level selection
|
1314 |
-
final_gpu_name = get_final_gpu_name(gpu_vendor, gpu_series, gpu_model
|
1315 |
|
1316 |
# Constant prompt text
|
1317 |
prompt_text = "A cat holding a sign that says hello world"
|
@@ -1392,47 +1431,25 @@ def create_gradio_interface():
|
|
1392 |
code_collapsed = gr.State(value=False)
|
1393 |
full_code_storage = gr.State(value="")
|
1394 |
|
1395 |
-
def generate_and_store_code(gpu_vendor, gpu_series, gpu_model,
|
1396 |
-
"""Generate code and return
|
1397 |
summary, full_code = generate_with_combined_gpu_name(
|
1398 |
-
gpu_vendor, gpu_series, gpu_model,
|
1399 |
model_name, dtype_selection, width, height, inference_steps
|
1400 |
)
|
1401 |
-
return
|
1402 |
|
1403 |
generate_btn.click(
|
1404 |
generate_and_store_code,
|
1405 |
inputs=[
|
1406 |
-
gpu_vendor, gpu_series, gpu_model,
|
1407 |
model_name, dtype_selection, width, height, inference_steps
|
1408 |
],
|
1409 |
-
outputs=[
|
1410 |
)
|
1411 |
|
1412 |
|
1413 |
|
1414 |
-
# Ultra Premium Footer
|
1415 |
-
gr.HTML("""
|
1416 |
-
<div class="ultra-glass" style="text-align: center; padding: 3rem 2rem; margin-top: 4rem; position: relative; overflow: hidden;">
|
1417 |
-
<div style="position: relative; z-index: 2;">
|
1418 |
-
<h4 style="color: #1e293b; font-size: 1.3rem; margin: 0 0 1rem 0; font-weight: 700;">
|
1419 |
-
✨ Pro Tips & Insights
|
1420 |
-
</h4>
|
1421 |
-
<p style="color: #475569; font-size: 1rem; margin: 0 0 1.5rem 0; font-weight: 500; line-height: 1.6; max-width: 600px; margin: 0 auto;">
|
1422 |
-
🚀 The generated code includes hardware-specific optimizations for memory efficiency and peak performance<br>
|
1423 |
-
🎯 Fine-tuned for your exact GPU configuration and model requirements
|
1424 |
-
</p>
|
1425 |
-
<div style="margin-top: 2rem;">
|
1426 |
-
<span style="display: inline-block; background: rgba(124, 58, 237, 0.1); padding: 0.75rem 1.5rem; border-radius: 20px; color: #7c3aed; font-size: 0.9rem; backdrop-filter: blur(10px); border: 1px solid rgba(124, 58, 237, 0.2); margin: 0 0.5rem;">
|
1427 |
-
🤖 Powered by Google Gemini 2.5
|
1428 |
-
</span>
|
1429 |
-
<span style="display: inline-block; background: rgba(236, 72, 153, 0.1); padding: 0.75rem 1.5rem; border-radius: 20px; color: #ec4899; font-size: 0.9rem; backdrop-filter: blur(10px); border: 1px solid rgba(236, 72, 153, 0.2); margin: 0 0.5rem;">
|
1430 |
-
❤️ Built for the Community
|
1431 |
-
</span>
|
1432 |
-
</div>
|
1433 |
-
</div>
|
1434 |
-
</div>
|
1435 |
-
""")
|
1436 |
|
1437 |
return interface
|
1438 |
|
@@ -1442,7 +1459,7 @@ def main():
|
|
1442 |
interface = create_gradio_interface()
|
1443 |
interface.launch(
|
1444 |
server_name="0.0.0.0",
|
1445 |
-
server_port=
|
1446 |
share=True,
|
1447 |
show_error=True
|
1448 |
)
|
|
|
114 |
try:
|
115 |
# Create manual hardware specs
|
116 |
# Parse dtype selection
|
117 |
+
if dtype_selection == "Auto":
|
118 |
user_dtype = None
|
119 |
else:
|
120 |
+
user_dtype = f"torch.{dtype_selection}"
|
121 |
|
122 |
manual_specs = {
|
123 |
'platform': platform,
|
|
|
210 |
.main-container {
|
211 |
max-width: 1400px;
|
212 |
margin: 0 auto;
|
213 |
+
padding: 1rem;
|
214 |
/* Removed position: relative that can interfere with dropdown positioning */
|
215 |
}
|
216 |
|
|
|
234 |
.glass-card {
|
235 |
background: rgba(255, 255, 255, 0.25) !important;
|
236 |
border: 1px solid rgba(255, 255, 255, 0.2) !important;
|
237 |
+
border-radius: 8px !important;
|
238 |
box-shadow:
|
239 |
0 8px 32px rgba(0, 0, 0, 0.1),
|
240 |
inset 0 1px 0 rgba(255, 255, 255, 0.2) !important;
|
241 |
+
margin-bottom: 1rem !important;
|
242 |
/* Removed backdrop-filter and transforms that break dropdown positioning */
|
243 |
}
|
244 |
|
245 |
.ultra-glass {
|
246 |
background: rgba(255, 255, 255, 0.15) !important;
|
247 |
border: 1px solid rgba(255, 255, 255, 0.3) !important;
|
248 |
+
border-radius: 10px !important;
|
249 |
box-shadow:
|
250 |
0 12px 40px rgba(0, 0, 0, 0.15),
|
251 |
inset 0 1px 0 rgba(255, 255, 255, 0.3) !important;
|
252 |
+
margin-bottom: 1rem !important;
|
253 |
/* Removed backdrop-filter that interferes with dropdown positioning */
|
254 |
}
|
255 |
|
|
|
261 |
rgba(59, 130, 246, 0.9) 100%) !important;
|
262 |
backdrop-filter: blur(20px) !important;
|
263 |
border: 1px solid rgba(255, 255, 255, 0.2) !important;
|
264 |
+
border-radius: 10px !important;
|
265 |
box-shadow:
|
266 |
0 20px 60px rgba(124, 58, 237, 0.3),
|
267 |
inset 0 1px 0 rgba(255, 255, 255, 0.2) !important;
|
268 |
position: relative;
|
269 |
overflow: hidden;
|
270 |
+
width: 100% !important;
|
271 |
+
max-width: 100% !important;
|
272 |
+
box-sizing: border-box !important;
|
273 |
}
|
274 |
|
275 |
.hero-header::before {
|
|
|
303 |
font-weight: 700 !important;
|
304 |
font-size: 1.1rem !important;
|
305 |
padding: 1rem 3rem !important;
|
306 |
+
border-radius: 8px !important;
|
307 |
box-shadow:
|
308 |
0 8px 32px rgba(102, 126, 234, 0.4),
|
309 |
inset 0 1px 0 rgba(255, 255, 255, 0.2) !important;
|
|
|
500 |
}
|
501 |
|
502 |
|
503 |
+
/* Code Areas - Moderate Clean Styling */
|
504 |
.code-container {
|
505 |
+
background: rgba(248, 250, 252, 0.95) !important;
|
506 |
+
border: 1px solid rgba(226, 232, 240, 0.8) !important;
|
507 |
+
border-radius: 6px !important;
|
508 |
+
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.1) !important;
|
|
|
|
|
|
|
|
|
|
|
509 |
overflow: hidden !important;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
510 |
}
|
511 |
|
512 |
/* Code editor styling */
|
513 |
.code-container .cm-editor {
|
514 |
+
background: #ffffff !important;
|
515 |
+
border-radius: 4px !important;
|
516 |
font-family: 'SF Mono', 'Monaco', 'Inconsolata', 'Roboto Mono', 'Fira Code', monospace !important;
|
517 |
+
font-size: 14px !important;
|
518 |
+
line-height: 1.5 !important;
|
|
|
|
|
|
|
|
|
|
|
519 |
}
|
520 |
|
521 |
+
/* Enable soft wrapping for code content */
|
522 |
.code-container .cm-content {
|
523 |
+
white-space: pre-wrap !important;
|
524 |
padding: 1.5rem !important;
|
525 |
+
color: #374151 !important;
|
526 |
+
}
|
527 |
+
|
528 |
+
.code-container .cm-focused {
|
529 |
+
outline: none !important;
|
530 |
+
box-shadow: 0 0 0 2px rgba(59, 130, 246, 0.3) !important;
|
531 |
}
|
532 |
|
533 |
.code-container .cm-line {
|
534 |
padding-left: 0.5rem !important;
|
535 |
+
white-space: pre-wrap !important;
|
536 |
+
word-wrap: break-word !important;
|
537 |
+
overflow-wrap: break-word !important;
|
538 |
}
|
539 |
|
540 |
+
/* Force wrapping ONLY - NO SCROLLING */
|
541 |
+
.code-container .cm-editor {
|
542 |
+
white-space: pre-wrap !important;
|
543 |
+
overflow-x: hidden !important;
|
544 |
+
}
|
545 |
+
|
546 |
+
.code-container .cm-scroller {
|
547 |
+
overflow-x: hidden !important;
|
548 |
+
width: 100% !important;
|
549 |
+
}
|
550 |
+
|
551 |
+
.code-container .cm-editor .cm-content {
|
552 |
+
white-space: pre-wrap !important;
|
553 |
+
word-break: break-all !important;
|
554 |
+
overflow-wrap: anywhere !important;
|
555 |
+
width: 100% !important;
|
556 |
+
max-width: 100% !important;
|
557 |
+
}
|
558 |
+
|
559 |
+
.code-container .cm-editor .cm-line {
|
560 |
+
white-space: pre-wrap !important;
|
561 |
+
word-break: break-all !important;
|
562 |
+
overflow-wrap: anywhere !important;
|
563 |
+
width: 100% !important;
|
564 |
+
max-width: 100% !important;
|
565 |
+
box-sizing: border-box !important;
|
566 |
+
}
|
567 |
+
|
568 |
+
/* Force the entire code container to have no horizontal overflow */
|
569 |
+
.code-container,
|
570 |
+
.code-container * {
|
571 |
+
overflow-x: hidden !important;
|
572 |
+
max-width: 100% !important;
|
573 |
+
}
|
574 |
+
|
575 |
+
/* Moderate syntax highlighting for Python */
|
576 |
+
.code-container .cm-keyword { color: #7c3aed !important; }
|
577 |
+
.code-container .cm-string { color: #059669 !important; }
|
578 |
+
.code-container .cm-comment { color: #6b7280 !important; font-style: italic !important; }
|
579 |
+
.code-container .cm-number { color: #dc2626 !important; }
|
580 |
+
.code-container .cm-variable { color: #1e40af !important; }
|
581 |
+
.code-container .cm-function { color: #7c2d12 !important; }
|
582 |
+
.code-container .cm-operator { color: #374151 !important; }
|
583 |
|
584 |
/* Code header styling */
|
585 |
.code-container label {
|
586 |
+
background: rgba(99, 102, 241, 0.1) !important;
|
587 |
+
color: #374151 !important;
|
588 |
+
padding: 0.75rem 1.25rem !important;
|
589 |
+
border-radius: 4px 4px 0 0 !important;
|
|
|
|
|
|
|
590 |
font-weight: 600 !important;
|
591 |
+
font-size: 0.95rem !important;
|
|
|
|
|
592 |
margin: 0 !important;
|
593 |
border: none !important;
|
594 |
+
border-bottom: 1px solid rgba(226, 232, 240, 0.8) !important;
|
595 |
}
|
596 |
|
597 |
|
598 |
/* Custom scrollbar for code area */
|
599 |
.code-container .cm-scroller::-webkit-scrollbar {
|
600 |
+
width: 6px !important;
|
601 |
+
height: 6px !important;
|
602 |
}
|
603 |
|
604 |
.code-container .cm-scroller::-webkit-scrollbar-track {
|
605 |
+
background: rgba(243, 244, 246, 0.8) !important;
|
606 |
+
border-radius: 3px !important;
|
607 |
}
|
608 |
|
609 |
.code-container .cm-scroller::-webkit-scrollbar-thumb {
|
610 |
+
background: rgba(156, 163, 175, 0.8) !important;
|
611 |
+
border-radius: 3px !important;
|
|
|
|
|
|
|
612 |
}
|
613 |
|
614 |
.code-container .cm-scroller::-webkit-scrollbar-thumb:hover {
|
615 |
+
background: rgba(107, 114, 128, 0.9) !important;
|
|
|
|
|
616 |
}
|
617 |
|
618 |
/* Line numbers styling */
|
619 |
.code-container .cm-lineNumbers {
|
620 |
+
background: rgba(249, 250, 251, 0.8) !important;
|
621 |
+
color: rgba(156, 163, 175, 0.8) !important;
|
622 |
+
border-right: 1px solid rgba(229, 231, 235, 0.8) !important;
|
623 |
padding-right: 0.5rem !important;
|
624 |
}
|
625 |
|
626 |
.code-container .cm-lineNumbers .cm-gutterElement {
|
627 |
+
color: rgba(156, 163, 175, 0.7) !important;
|
628 |
+
font-weight: 400 !important;
|
629 |
}
|
630 |
|
631 |
/* Memory Analysis Cards */
|
|
|
705 |
background: #ffffff !important;
|
706 |
}
|
707 |
|
708 |
+
/* Accordion title styling */
|
709 |
+
.gradio-accordion .label-wrap {
|
710 |
+
font-size: 1.5rem !important;
|
711 |
+
font-weight: 600 !important;
|
712 |
+
}
|
713 |
+
|
714 |
+
.gradio-accordion summary {
|
715 |
+
font-size: 1.5rem !important;
|
716 |
+
font-weight: 600 !important;
|
717 |
+
}
|
718 |
+
|
719 |
/* Mobile Responsive Styles */
|
720 |
@media (max-width: 768px) {
|
721 |
.main-container {
|
|
|
807 |
|
808 |
with gr.Column(elem_classes="main-container"):
|
809 |
# Ultra Premium Header
|
810 |
+
gr.HTML("""
|
811 |
+
<div class="hero-header floating" style="text-align: center; padding: 1.5rem 1rem; margin-bottom: 1rem; position: relative;">
|
812 |
+
<div style="position: relative; z-index: 2;">
|
813 |
+
<h1 style="color: white; font-size: 2.2rem; margin: 0; font-weight: 800; text-shadow: 0 4px 8px rgba(0,0,0,0.3); letter-spacing: -0.02em; background: linear-gradient(135deg, #ffffff 0%, #f8fafc 50%, #e2e8f0 100%); -webkit-background-clip: text; -webkit-text-fill-color: transparent; background-clip: text;">
|
814 |
+
✨ Auto Diffusers Config
|
815 |
+
</h1>
|
816 |
+
<h2 style="color: rgba(255,255,255,0.95); font-size: 1.2rem; margin: 0.3rem 0 0.8rem 0; font-weight: 600; text-shadow: 0 2px 4px rgba(0,0,0,0.2);">
|
817 |
+
Hardware-Optimized Code Generator
|
818 |
+
</h2>
|
819 |
+
<p style="color: rgba(255,255,255,0.9); font-size: 1rem; margin: 0; font-weight: 400; text-shadow: 0 2px 4px rgba(0,0,0,0.2); max-width: 500px; margin: 0 auto; line-height: 1.5;">
|
820 |
+
Generate optimized diffusion model code for your hardware
|
821 |
+
</p>
|
822 |
+
<div style="margin-top: 1rem;">
|
823 |
+
<span style="display: inline-block; background: rgba(255,255,255,0.2); padding: 0.5rem 1rem; border-radius: 20px; color: white; font-size: 0.9rem; backdrop-filter: blur(10px); border: 1px solid rgba(255,255,255,0.3);">
|
824 |
+
🤖 Powered by Google Gemini 2.5
|
825 |
+
</span>
|
|
|
|
|
|
|
|
|
826 |
</div>
|
827 |
+
</div>
|
828 |
+
</div>
|
829 |
+
""")
|
830 |
|
831 |
# Main Content Area
|
832 |
|
833 |
# Hardware Selection Section
|
834 |
with gr.Group(elem_classes="glass-card"):
|
835 |
+
with gr.Accordion("⚙️ Hardware Specifications", open=False) as hardware_accordion:
|
836 |
+
gr.HTML("""
|
837 |
+
<div class="section-header" style="text-align: center;">
|
838 |
+
<p style="margin: 0; color: #64748b; font-size: 1rem; font-weight: 500;">
|
839 |
+
Configure your system hardware for optimal code generation
|
840 |
+
</p>
|
841 |
+
</div>
|
842 |
+
""")
|
843 |
+
|
844 |
+
# Platform, VRAM, and RAM in a single row
|
845 |
+
with gr.Row():
|
|
|
|
|
846 |
platform = gr.Dropdown(
|
847 |
choices=["Linux", "Darwin", "Windows"],
|
848 |
label="🖥️ Platform",
|
849 |
value="Linux",
|
850 |
info="Your operating system"
|
851 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
852 |
vram_gb = gr.Number(
|
853 |
+
label="🎯 VRAM (GB)",
|
854 |
value=8,
|
855 |
minimum=0,
|
856 |
maximum=200,
|
|
|
864 |
info="Total system memory"
|
865 |
)
|
866 |
|
867 |
+
# GPU configuration on separate lines
|
868 |
+
gpu_vendor = gr.Dropdown(
|
869 |
+
choices=[
|
870 |
+
"Custom (Manual Input)",
|
871 |
+
"NVIDIA Consumer (GeForce RTX)",
|
872 |
+
"NVIDIA Professional (RTX A-Series)",
|
873 |
+
"NVIDIA Data Center",
|
874 |
+
"Apple Silicon",
|
875 |
+
"AMD",
|
876 |
+
"Intel",
|
877 |
+
"CPU Only"
|
878 |
+
],
|
879 |
+
label="🎮 GPU Vendor/Category",
|
880 |
+
value="Custom (Manual Input)",
|
881 |
+
info="Select your GPU category"
|
882 |
+
)
|
883 |
+
|
884 |
+
gpu_series = gr.Dropdown(
|
885 |
+
choices=[],
|
886 |
+
label="📊 GPU Series",
|
887 |
+
visible=False,
|
888 |
+
interactive=True,
|
889 |
+
info="Choose your GPU series"
|
890 |
+
)
|
891 |
+
|
892 |
+
gpu_model = gr.Dropdown(
|
893 |
+
choices=[],
|
894 |
+
label="🔧 GPU Model",
|
895 |
+
visible=False,
|
896 |
+
interactive=True,
|
897 |
+
info="Select your specific GPU model"
|
898 |
+
)
|
899 |
+
|
900 |
+
gpu_name = gr.Textbox(
|
901 |
+
label="Selected GPU",
|
902 |
+
visible=False
|
903 |
+
)
|
904 |
+
|
905 |
# Model Configuration Section
|
906 |
with gr.Group(elem_classes="glass-card"):
|
907 |
+
with gr.Accordion("🤖 Model Configuration", open=False) as model_accordion:
|
908 |
+
gr.HTML("""
|
909 |
+
<div class="section-header" style="text-align: center;">
|
910 |
+
<p style="margin: 0; color: #64748b; font-size: 1rem; font-weight: 500;">
|
911 |
+
Configure the AI model and generation parameters
|
912 |
+
</p>
|
913 |
+
</div>
|
914 |
+
""")
|
915 |
+
|
916 |
+
# Model Name - Full width on its own row
|
917 |
+
model_name = gr.Textbox(
|
918 |
+
label="🏷️ Model Name",
|
919 |
+
value="black-forest-labs/FLUX.1-schnell",
|
920 |
+
placeholder="e.g., black-forest-labs/FLUX.1-schnell",
|
921 |
+
info="HuggingFace model identifier"
|
922 |
+
)
|
923 |
+
|
924 |
+
# Other parameters in 4-column layout
|
925 |
+
with gr.Row():
|
926 |
+
width = gr.Number(
|
927 |
+
label="📏 Width (px)",
|
928 |
+
value=1360,
|
929 |
+
minimum=256,
|
930 |
+
maximum=2048,
|
931 |
+
step=64,
|
932 |
+
info="Image width"
|
933 |
+
)
|
934 |
+
height = gr.Number(
|
935 |
+
label="📐 Height (px)",
|
936 |
+
value=768,
|
937 |
+
minimum=256,
|
938 |
+
maximum=2048,
|
939 |
+
step=64,
|
940 |
+
info="Image height"
|
941 |
)
|
|
|
942 |
dtype_selection = gr.Dropdown(
|
943 |
+
choices=["Auto", "float32", "float16", "bfloat16"],
|
944 |
+
label="⚡ dtype",
|
945 |
+
value="Auto",
|
946 |
+
info="Precision mode"
|
947 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
948 |
inference_steps = gr.Number(
|
949 |
+
label="🔄 Inf. Steps",
|
950 |
value=4,
|
951 |
minimum=1,
|
952 |
maximum=50,
|
953 |
+
info="Denoising steps"
|
954 |
)
|
955 |
|
956 |
+
# Memory Analysis Subsection (inside Model Configuration)
|
957 |
+
gr.HTML("""
|
958 |
+
<div style="margin: 1.5rem 0 0.5rem 0; padding-top: 1rem; border-top: 1px solid rgba(226, 232, 240, 0.6);">
|
959 |
+
<h4 style="margin: 0 0 0.5rem 0; color: #374151; font-size: 1.1rem; font-weight: 600;">
|
960 |
+
🧠 Memory Analysis
|
961 |
+
</h4>
|
962 |
+
<p style="margin: 0; color: #6b7280; font-size: 0.9rem;">
|
963 |
+
Real-time analysis of model memory requirements and optimization strategies
|
964 |
+
</p>
|
965 |
+
</div>
|
966 |
+
""")
|
967 |
+
|
968 |
+
memory_analysis_output = gr.Markdown(
|
969 |
+
value="✨ Select a model and configure your hardware to see memory requirements and optimization recommendations.",
|
970 |
+
elem_classes="memory-card"
|
971 |
+
)
|
972 |
|
|
|
|
|
|
|
|
|
973 |
|
974 |
# Generate Button
|
975 |
with gr.Row():
|
976 |
with gr.Column():
|
|
|
|
|
|
|
|
|
977 |
generate_btn = gr.Button(
|
978 |
"✨ Generate Optimized Code",
|
979 |
variant="primary",
|
|
|
983 |
|
984 |
# Generated Code Section
|
985 |
with gr.Group(elem_classes="ultra-glass"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
986 |
# Code Output
|
987 |
code_output = gr.Code(
|
988 |
+
label="Generated Code",
|
989 |
language="python",
|
990 |
lines=20,
|
991 |
interactive=True,
|
992 |
show_label=True,
|
993 |
elem_classes="code-container",
|
994 |
+
show_line_numbers=False,
|
995 |
+
value="# Your optimized diffusion code will appear here after generation\n# Click 'Generate Optimized Code' to create hardware-specific Python code\n\nprint('Ready to generate AI art with optimized performance!')"
|
996 |
)
|
997 |
|
998 |
def on_gpu_vendor_change(vendor):
|
999 |
"""Handle GPU vendor selection and update series dropdown."""
|
1000 |
if vendor == "Custom (Manual Input)":
|
1001 |
+
return (gr.update(visible=False, choices=[]),
|
|
|
1002 |
gr.update(visible=False, choices=[]),
|
1003 |
"", gr.update())
|
1004 |
elif vendor == "CPU Only":
|
1005 |
+
return (gr.update(visible=False, choices=[]),
|
|
|
1006 |
gr.update(visible=False, choices=[]),
|
1007 |
"", 0)
|
1008 |
elif vendor == "NVIDIA Consumer (GeForce RTX)":
|
1009 |
+
return (gr.update(visible=True, choices=["RTX 50 Series", "RTX 40 Series", "RTX 30 Series"]),
|
|
|
1010 |
gr.update(visible=False, choices=[]),
|
1011 |
"", gr.update())
|
1012 |
elif vendor == "NVIDIA Professional (RTX A-Series)":
|
1013 |
+
return (gr.update(visible=True, choices=["RTX A6000 Series", "RTX A5000 Series", "RTX A4000 Series"]),
|
|
|
1014 |
gr.update(visible=False, choices=[]),
|
1015 |
"", gr.update())
|
1016 |
elif vendor == "NVIDIA Data Center":
|
1017 |
+
return (gr.update(visible=True, choices=["Blackwell (B-Series)", "Hopper (H-Series)", "Ada Lovelace (L-Series)", "Ampere (A-Series)", "Volta/Tesla"]),
|
|
|
1018 |
gr.update(visible=False, choices=[]),
|
1019 |
"", gr.update())
|
1020 |
elif vendor == "Apple Silicon":
|
1021 |
+
return (gr.update(visible=True, choices=["M4 Series", "M3 Series", "M2 Series", "M1 Series"]),
|
|
|
1022 |
gr.update(visible=False, choices=[]),
|
1023 |
"", gr.update())
|
1024 |
elif vendor == "AMD":
|
1025 |
+
return (gr.update(visible=True, choices=["Radeon RX 7000", "Radeon RX 6000", "Instinct MI Series"]),
|
|
|
1026 |
gr.update(visible=False, choices=[]),
|
1027 |
"", gr.update())
|
1028 |
elif vendor == "Intel":
|
1029 |
+
return (gr.update(visible=True, choices=["Arc A-Series"]),
|
|
|
1030 |
gr.update(visible=False, choices=[]),
|
1031 |
"", gr.update())
|
1032 |
else:
|
1033 |
+
return (gr.update(visible=False, choices=[]),
|
|
|
1034 |
gr.update(visible=False, choices=[]),
|
1035 |
"", gr.update())
|
1036 |
|
|
|
1107 |
else:
|
1108 |
return model, gr.update()
|
1109 |
|
1110 |
+
def get_final_gpu_name(vendor, series, model):
|
1111 |
+
"""Get the final GPU name based on vendor selection."""
|
1112 |
if vendor == "Custom (Manual Input)":
|
1113 |
+
return "Custom GPU"
|
1114 |
elif vendor == "CPU Only":
|
1115 |
return ""
|
1116 |
elif model and "(" in model and "GB" in model:
|
|
|
1118 |
elif model:
|
1119 |
return model
|
1120 |
else:
|
1121 |
+
return vendor if vendor != "Custom (Manual Input)" else "Custom GPU"
|
1122 |
+
|
1123 |
+
def update_hardware_accordion_title(platform, gpu_vendor, gpu_model, vram_gb, ram_gb):
|
1124 |
+
"""Update hardware accordion title with current configuration."""
|
1125 |
+
final_gpu = get_final_gpu_name(gpu_vendor, "", gpu_model)
|
1126 |
+
if not final_gpu:
|
1127 |
+
final_gpu = gpu_vendor if gpu_vendor != "Custom (Manual Input)" else "Custom GPU"
|
1128 |
+
|
1129 |
+
# Extract GPU name and VRAM for cleaner display
|
1130 |
+
gpu_display = final_gpu
|
1131 |
+
if gpu_model and "(" in gpu_model and "GB" in gpu_model:
|
1132 |
+
# Extract clean GPU name with VRAM from model selection
|
1133 |
+
gpu_display = gpu_model
|
1134 |
+
elif final_gpu and vram_gb:
|
1135 |
+
gpu_display = f"{final_gpu} ({vram_gb}GB)"
|
1136 |
+
|
1137 |
+
return f"⚙️ Hardware: {platform} | {gpu_display} | {ram_gb}GB RAM"
|
1138 |
+
|
1139 |
+
def update_model_accordion_title(model_name, dtype_selection, width, height, inference_steps, memory_analysis_text=""):
|
1140 |
+
"""Update model accordion title with current configuration including memory info."""
|
1141 |
+
model_short = model_name.split("/")[-1] if "/" in model_name else model_name
|
1142 |
+
dtype_short = dtype_selection
|
1143 |
+
|
1144 |
+
# Extract memory info for title
|
1145 |
+
memory_info = ""
|
1146 |
+
if memory_analysis_text and not memory_analysis_text.startswith("Select a model") and "Error" not in memory_analysis_text:
|
1147 |
+
lines = memory_analysis_text.split('\n')
|
1148 |
+
for line in lines:
|
1149 |
+
if "Memory Requirements:" in line or "estimated" in line.lower():
|
1150 |
+
if "GB" in line:
|
1151 |
+
import re
|
1152 |
+
gb_match = re.search(r'(\d+\.?\d*)\s*GB', line)
|
1153 |
+
if gb_match:
|
1154 |
+
memory_info = f" | {gb_match.group(1)}GB req"
|
1155 |
+
break
|
1156 |
+
|
1157 |
+
return f"🤖 Model: {model_short} | {dtype_short} | {width}×{height} | {inference_steps} steps{memory_info}"
|
1158 |
+
|
1159 |
|
1160 |
def update_memory_analysis(model_name, vram_gb):
|
1161 |
"""Update memory analysis in real-time based on selections."""
|
|
|
1193 |
gpu_vendor.change(
|
1194 |
on_gpu_vendor_change,
|
1195 |
inputs=[gpu_vendor],
|
1196 |
+
outputs=[gpu_series, gpu_model, gpu_name, vram_gb]
|
1197 |
).then(
|
1198 |
update_memory_analysis,
|
1199 |
inputs=[model_name, vram_gb],
|
|
|
1216 |
outputs=memory_analysis_output
|
1217 |
)
|
1218 |
|
|
|
|
|
|
|
|
|
|
|
|
|
1219 |
|
1220 |
# Update memory analysis when model name or VRAM changes
|
1221 |
model_name.change(
|
|
|
1236 |
inputs=[model_name, vram_gb],
|
1237 |
outputs=memory_analysis_output
|
1238 |
)
|
1239 |
+
|
1240 |
+
# Create wrapper functions that return gr.update for accordion labels
|
1241 |
+
def update_hardware_accordion(platform, gpu_vendor, gpu_model, vram_gb, ram_gb):
|
1242 |
+
title = update_hardware_accordion_title(platform, gpu_vendor, gpu_model, vram_gb, ram_gb)
|
1243 |
+
return gr.update(label=title)
|
1244 |
+
|
1245 |
+
def update_model_accordion(model_name, dtype_selection, width, height, inference_steps, memory_analysis_text=""):
|
1246 |
+
title = update_model_accordion_title(model_name, dtype_selection, width, height, inference_steps, memory_analysis_text)
|
1247 |
+
return gr.update(label=title)
|
1248 |
+
|
1249 |
+
# Load initial accordion titles on startup
|
1250 |
+
interface.load(
|
1251 |
+
update_hardware_accordion,
|
1252 |
+
inputs=[platform, gpu_vendor, gpu_model, vram_gb, ram_gb],
|
1253 |
+
outputs=hardware_accordion
|
1254 |
+
)
|
1255 |
+
|
1256 |
+
interface.load(
|
1257 |
+
update_model_accordion,
|
1258 |
+
inputs=[model_name, dtype_selection, width, height, inference_steps, memory_analysis_output],
|
1259 |
+
outputs=model_accordion
|
1260 |
+
)
|
1261 |
+
|
1262 |
+
# Accordion title update event handlers
|
1263 |
+
|
1264 |
+
# Hardware accordion title updates
|
1265 |
+
for component in [platform, gpu_vendor, gpu_model, vram_gb, ram_gb]:
|
1266 |
+
component.change(
|
1267 |
+
update_hardware_accordion,
|
1268 |
+
inputs=[platform, gpu_vendor, gpu_model, vram_gb, ram_gb],
|
1269 |
+
outputs=hardware_accordion
|
1270 |
+
)
|
1271 |
+
|
1272 |
+
# Model accordion title updates (including memory analysis)
|
1273 |
+
for component in [model_name, dtype_selection, width, height, inference_steps]:
|
1274 |
+
component.change(
|
1275 |
+
update_model_accordion,
|
1276 |
+
inputs=[model_name, dtype_selection, width, height, inference_steps, memory_analysis_output],
|
1277 |
+
outputs=model_accordion
|
1278 |
+
)
|
1279 |
+
|
1280 |
+
# Update model accordion when memory analysis changes
|
1281 |
+
memory_analysis_output.change(
|
1282 |
+
update_model_accordion,
|
1283 |
+
inputs=[model_name, dtype_selection, width, height, inference_steps, memory_analysis_output],
|
1284 |
+
outputs=model_accordion
|
1285 |
+
)
|
1286 |
|
1287 |
def create_code_summary(generated_code, model_name, final_gpu_name, vram_gb):
|
1288 |
"""Create a concise summary of the generated code."""
|
|
|
1348 |
|
1349 |
return '\n'.join(filtered_lines)
|
1350 |
|
1351 |
+
def generate_with_combined_gpu_name(gpu_vendor, gpu_series, gpu_model, vram_gb, ram_gb, platform, model_name, dtype_selection, width, height, inference_steps):
|
1352 |
+
"""Generate code with the correct GPU name from multi-level selection, including memory analysis."""
|
1353 |
+
final_gpu_name = get_final_gpu_name(gpu_vendor, gpu_series, gpu_model)
|
1354 |
|
1355 |
# Constant prompt text
|
1356 |
prompt_text = "A cat holding a sign that says hello world"
|
|
|
1431 |
code_collapsed = gr.State(value=False)
|
1432 |
full_code_storage = gr.State(value="")
|
1433 |
|
1434 |
+
def generate_and_store_code(gpu_vendor, gpu_series, gpu_model, vram_gb, ram_gb, platform, model_name, dtype_selection, width, height, inference_steps):
|
1435 |
+
"""Generate code and return code for display and full code for storage."""
|
1436 |
summary, full_code = generate_with_combined_gpu_name(
|
1437 |
+
gpu_vendor, gpu_series, gpu_model, vram_gb, ram_gb, platform,
|
1438 |
model_name, dtype_selection, width, height, inference_steps
|
1439 |
)
|
1440 |
+
return full_code, full_code, False # display_code, stored_code, reset_collapsed_state
|
1441 |
|
1442 |
generate_btn.click(
|
1443 |
generate_and_store_code,
|
1444 |
inputs=[
|
1445 |
+
gpu_vendor, gpu_series, gpu_model, vram_gb, ram_gb, platform,
|
1446 |
model_name, dtype_selection, width, height, inference_steps
|
1447 |
],
|
1448 |
+
outputs=[code_output, full_code_storage, code_collapsed]
|
1449 |
)
|
1450 |
|
1451 |
|
1452 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1453 |
|
1454 |
return interface
|
1455 |
|
|
|
1459 |
interface = create_gradio_interface()
|
1460 |
interface.launch(
|
1461 |
server_name="0.0.0.0",
|
1462 |
+
server_port=7861,
|
1463 |
share=True,
|
1464 |
show_error=True
|
1465 |
)
|