File size: 12,638 Bytes
a4b9544
 
 
 
 
 
 
95045d1
20e95bf
a4b9544
 
 
 
 
 
 
 
 
 
 
d9a8348
a4b9544
 
d9a8348
95045d1
a4b9544
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95045d1
 
 
a4b9544
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98f2506
a4b9544
 
 
 
98f2506
a4b9544
 
 
 
 
 
 
95045d1
d9a8348
95045d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9a8348
95045d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4b9544
 
 
 
 
 
 
 
 
 
d9a8348
 
 
 
 
 
 
a4b9544
 
 
95045d1
 
a4b9544
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95045d1
d9a8348
a4b9544
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95045d1
 
 
d9a8348
95045d1
 
 
 
 
 
 
 
 
 
 
 
 
d9a8348
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4b9544
95045d1
a4b9544
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
"""
Adapted from https://huggingface.co/spaces/stabilityai/stable-diffusion
"""

from tensorflow import keras

import time
import json
import requests

import gradio as gr
import keras_cv

from constants import css, img_height, img_width, num_images_to_gen
from share_btn import community_icon_html, loading_icon_html, share_js

from huggingface_hub import from_pretrained_keras

PLACEHOLDER_TOKEN="<my-cat-token>"

MODEL_CKPT = "chansung/my-kitty@v1673447112"
MODEL = from_pretrained_keras(MODEL_CKPT)

head_sha = "119d87285b1a7dda732e72de6028d576af17ef29"

model = keras_cv.models.StableDiffusion(
    img_width=img_width, img_height=img_height, jit_compile=True
)
model._text_encoder = MODEL
model._text_encoder.compile(jit_compile=True)
model.tokenizer.add_tokens(PLACEHOLDER_TOKEN)

# Warm-up the model.
_ = model.text_to_image("Teddy bear", batch_size=num_images_to_gen)

def generate_image_fn(prompt: str, unconditional_guidance_scale: int) -> list:
    start_time = time.time()
    # `images is an `np.ndarray`. So we convert it to a list of ndarrays.
    # Each ndarray represents a generated image.
    # Reference: https://gradio.app/docs/#gallery
    images = model.text_to_image(
        prompt,
        batch_size=num_images_to_gen,
        unconditional_guidance_scale=unconditional_guidance_scale,
    )
    end_time = time.time()
    print(f"Time taken: {end_time - start_time} seconds.")
    return [image for image in images]


description = "This Space demonstrates a fine-tuned Stable Diffusion model."
article = "This Space is generated automatically from a TFX pipeline. If you are interested in, please check out the [original repository](https://github.com/deep-diver/textual-inversion-sd)."

demoInterface = gr.Interface(
    generate_image_fn,
    inputs=[
        gr.Textbox(
            label="Enter your prompt",
            max_lines=1,
#            placeholder="cute Sundar Pichai creature",
        ),
        gr.Slider(value=40, minimum=8, maximum=50, step=1),
    ],
    outputs=gr.Gallery().style(grid=[2], height="auto"),
    title="Generate custom images with finetuned embeddings of Stable Diffusion",
    description=description,
    article=article,
    examples=[
        [f"an oil painting of {PLACEHOLDER_TOKEN}", 8], 
        [f"A mysterious {PLACEHOLDER_TOKEN} approaches the great pyramids of egypt.", 8]],
    allow_flagging=False,
)


def avaliable_providers():
    providers = []
    
    headers = {
        "Content-Type": "application/json",
    }
    endpoint_url = "https://api.endpoints.huggingface.cloud/provider"
    response = requests.get(endpoint_url, headers=headers)

    for provider in response.json()['items']:
        if provider['status'] == 'available':
            providers.append(provider['vendor'])
    
    return providers

def update_regions(provider):
    avalialbe_regions = []
    
    headers = {
        "Content-Type": "application/json",
    }
    endpoint_url = f"https://api.endpoints.huggingface.cloud/provider/{provider}/region"
    response = requests.get(endpoint_url, headers=headers)

    for region in response.json()['items']:
        if region['status'] == 'available':
            avalialbe_regions.append(f"{region['region']}/{region['label']}")

    return gr.Dropdown.update(
        choices=avalialbe_regions,
        value=avalialbe_regions[0] if len(avalialbe_regions) > 0 else None
    )

def update_compute_options(provider, region):
    region = region.split("/")[0]
    avalialbe_compute_options = []

    headers = {
        "Content-Type": "application/json",
    }
    endpoint_url = f"https://api.endpoints.huggingface.cloud/provider/{provider}/region/{region}/compute"
    print(endpoint_url)
    response = requests.get(endpoint_url, headers=headers)

    for compute in response.json()['items']:
        if compute['status'] == 'available':
            accelerator = compute['accelerator']
            numAccelerators = compute['numAccelerators']
            memoryGb = compute['memoryGb'].replace("Gi", "GB")
            architecture = compute['architecture']
            instanceType = compute['instanceType']
            
            type = f"{numAccelerators}vCPU {memoryGb}{architecture}" if accelerator == "cpu" else f"{numAccelerators}x {architecture}"
            
            avalialbe_compute_options.append(
                f"{compute['accelerator'].upper()} [{compute['instanceSize']}] 路 {type}{instanceType}"
            )

    return gr.Dropdown.update(
        choices=avalialbe_compute_options,
        value=avalialbe_compute_options[0] if len(avalialbe_compute_options) > 0 else None
    )

def submit(
    hf_account_input,
    hf_token_input,
    endpoint_name_input,
    provider_selector,
    region_selector,
    repository_selector,
    task_selector,
    framework_selector,
    compute_selector,
    min_node_selector, 
    max_node_selector, 
    security_selector    
):
    compute_resources = compute_selector.split("路")
    accelerator = compute_resources[0][:3].strip()

    size_l_index = compute_resources[0].index("[") - 1
    size_r_index = compute_resources[0].index("]")
    size = compute_resources[0][size_l_index : size_r_index].strip()

    type = compute_resources[-1].strip()
    
    payload = {
      "accountId": hf_account_input.strip(),
      "compute": {
        "accelerator": accelerator.lower(),
        "instanceSize": size[1:],
        "instanceType": type,
        "scaling": {
          "maxReplica": int(max_node_selector),
          "minReplica": int(min_node_selector)
        }
      },
      "model": {
        "framework": framework_selector.lower(),
        "image": {
          "huggingface": {}
        },
        "repository": repository_selector.lower(),
        "revision": head_sha,
        "task": task_selector.lower()
      },
      "name": endpoint_name_input.strip(),
      "provider": {
        "region": region_selector.split("/")[0].lower(),
        "vendor": provider_selector.lower()
      },
      "type": security_selector.lower()
    }
    
    print(payload)

    payload = json.dumps(payload)
    print(payload)

    headers = {
        "Authorization": f"Bearer {hf_token_input.strip()}",
        "Content-Type": "application/json",
    }
    endpoint_url = f"https://api.endpoints.huggingface.cloud/endpoint"
    print(endpoint_url)

    response = requests.post(endpoint_url, headers=headers, data=payload)

    if response.status_code == 400:
        return f"{response.text}. Malformed data in {payload}"
    elif response.status_code == 401:
        return "Invalid token"
    elif response.status_code == 409:
        return f"Endpoint {endpoint_name_input} already exists"
    elif response.status_code == 202:
        return f"Endpoint {endpoint_name_input} created successfully on {provider_selector.lower()} using {repository_selector.lower()}@{head_sha}.\nPlease check out the progress at https://ui.endpoints.huggingface.co/endpoints."
    else:
        return f"something went wrong {response.status_code} = {response.text}"

with gr.Blocks() as hf_endpoint:
    providers = avaliable_providers()

    gr.Markdown(
    """
    ## Deploy Stable Diffusion on 馃 Endpoint
    ---
    """)
    
    gr.Markdown("""
    #### Your 馃 Account ID(Name)
    """)
    hf_account_input = gr.Textbox(
        show_label=False,
    )

    gr.Markdown("""
    #### Your 馃 Access Token
    """)
    hf_token_input = gr.Textbox(
        show_label=False,
        type="password"
    )

    gr.Markdown("""    
    #### Decide the Endpoint name
    """)
    endpoint_name_input = gr.Textbox(
        show_label=False
    )    

    with gr.Row():
        gr.Markdown("""    
        #### Cloud Provider
        """)

        gr.Markdown("""    
        #### Cloud Region
        """)       
    
    with gr.Row():
        provider_selector = gr.Dropdown(
            choices=providers,
            interactive=True,
            show_label=False,
        )
        
        region_selector = gr.Dropdown(
            [],
            value="",
            interactive=True,
            show_label=False,
        )
        
        provider_selector.change(update_regions, inputs=provider_selector, outputs=region_selector)

    with gr.Row():
        gr.Markdown("""    
        #### Target Model
        """)

        gr.Markdown("""    
        #### Target Model Version(branch)
        """)       
    
    with gr.Row():
        repository_selector = gr.Textbox(
            value="chansung/my-kitty",
            interactive=False,
            show_label=False,
        )

        revision_selector = gr.Textbox(
            value=f"v1673447112/{head_sha[:7]}",
            interactive=False,
            show_label=False,
        )        

    with gr.Row():
        gr.Markdown("""    
        #### Task
        """)

        gr.Markdown("""    
        #### Framework
        """)      
    
    with gr.Row():
        task_selector = gr.Textbox(
            value="Custom",
            interactive=False,
            show_label=False,
        )

        framework_selector = gr.Textbox(
            value="TensorFlow",
            interactive=False,
            show_label=False,
        )

    gr.Markdown("""
    
    #### Select Compute Instance Type
    """)    
    compute_selector = gr.Dropdown(
        [],
        value="",
        interactive=True,
        show_label=False,
    )
    region_selector.change(update_compute_options, inputs=[provider_selector, region_selector], outputs=compute_selector)

    with gr.Row():
        gr.Markdown("""    
        #### Min Number of Nodes
        """)

        gr.Markdown("""    
        #### Max Number of Nodes
        """)

        gr.Markdown("""    
        #### Security Level
        """)        
    
    with gr.Row():
        min_node_selector = gr.Number(
            value=1,
            interactive=True,
            show_label=False,
        )

        max_node_selector = gr.Number(
            value=1,
            interactive=True,
            show_label=False,
        )

        security_selector = gr.Radio(
            choices=["Protected", "Public", "Private"],
            value="Public",
            interactive=True,
            show_label=False,
        )
    
    submit_button = gr.Button(
        value="Submit",
    )

    status_txt = gr.Textbox(
        value="any status update will be displayed here",
        interactive=False
    )

    submit_button.click(
        submit, 
        inputs=[
            hf_account_input,
            hf_token_input,
            endpoint_name_input,
            provider_selector,
            region_selector,
            repository_selector,
            task_selector,
            framework_selector,
            compute_selector,
            min_node_selector, 
            max_node_selector, 
            security_selector],
        outputs=status_txt)

    gr.Markdown("""    
    #### Pricing Table(CPU) - 2023/1/11
    """)

    gr.Dataframe(
        headers=["provider", "size", "$/h", "vCPUs", "Memory", "Architecture"],
        datatype=["str", "str", "str", "number", "str", "str"],
        row_count=8,
        col_count=(6, "fixed"),
        value=[
            ["aws", "small", "$0.06", 1, "2GB", "Intel Xeon - Ice Lake"],
            ["aws", "medium", "$0.12", 2, "4GB", "Intel Xeon - Ice Lake"],
            ["aws", "large", "$0.24", 4, "8GB", "Intel Xeon - Ice Lake"],
            ["aws", "xlarge", "$0.48", 8, "16GB", "Intel Xeon - Ice Lake"],
            ["azure", "small", "$0.06", 1, "2GB", "Intel Xeon"],
            ["azure", "medium", "$0.12", 2, "4GB", "Intel Xeon"],
            ["azure", "large", "$0.24", 4, "8GB", "Intel Xeon"],
            ["azure", "xlarge", "$0.48", 8, "16GB", "Intel Xeon"],
        ]
    )

    gr.Markdown("""    
    #### Pricing Table(GPU) - 2023/1/11
    """)    

    gr.Dataframe(
        headers=["provider", "size", "$/h", "GPUs", "Memory", "Architecture"],
        datatype=["str", "str", "str", "number", "str", "str"],
        row_count=6,
        col_count=(6, "fixed"),
        value=[
            ["aws", "small", "$0.60", 1, "14GB", "NVIDIA T4"],
            ["aws", "medium", "$1.30", 1, "24GB", "NVIDIA A10G"],
            ["aws", "large", "$4.50", 4, "156B", "NVIDIA T4"],
            ["aws", "xlarge", "$6.50", 1, "80GB", "NVIDIA A100"],
            ["aws", "xxlarge", "$7.00", 4, "96GB", "NVIDIA A10G"],
            ["aws", "xxxlarge", "$45.0", 8, "640GB", "NVIDIA A100"],
        ]
    )        

gr.TabbedInterface(
    [demoInterface, hf_endpoint], ["Playground", " Deploy on 馃 Endpoint"]
).launch(enable_queue=True)