File size: 5,805 Bytes
2150dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
cc36806
 
17f4658
 
d9cf71a
 
2150dbe
d9cf71a
 
 
 
 
2150dbe
d9cf71a
 
2150dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
435eeff
2150dbe
 
 
 
 
 
 
 
 
 
d9cf71a
2150dbe
435eeff
 
df18ce5
 
 
 
 
 
 
 
 
 
b7fa83a
df18ce5
 
 
 
 
cb9bbbd
 
 
b9ba013
cb9bbbd
870ee21
 
b96e226
 
 
6d90bf4
870ee21
f8d1449
1e7407e
 
6d90bf4
6c907be
 
 
43b249a
 
 
 
 
6d90bf4
43b249a
 
 
 
6d90bf4
43b249a
6c907be
 
 
435eeff
6cb38e5
df18ce5
 
 
 
 
b0d1eb8
df18ce5
 
 
b7fa83a
74ce338
df18ce5
6a49dde
cf09261
6a49dde
 
86623e4
b7fa83a
 
 
 
 
 
 
 
 
 
 
32e7a76
 
 
 
b7fa83a
32e7a76
b7fa83a
 
32e7a76
 
 
 
 
b7fa83a
91cc668
 
 
b7fa83a
df18ce5
4d82a73
90183ac
 
 
df18ce5
90183ac
df18ce5
 
32e7a76
df18ce5
 
 
 
 
5c5a6a5
ce96db4
df18ce5
ce96db4
df18ce5
79858a5
32e7a76
 
 
 
 
 
 
 
 
79858a5
435eeff
4f44913
2150dbe
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
"""
Adapted from https://huggingface.co/spaces/stabilityai/stable-diffusion
"""

from tensorflow import keras

import time

import gradio as gr
import keras_cv

from constants import css, examples, img_height, img_width, num_images_to_gen
from share_btn import community_icon_html, loading_icon_html, share_js

from huggingface_hub import from_pretrained_keras

import requests

# MODEL_CKPT = "chansung/textual-inversion-pipeline@v1673026791"
# MODEL = from_pretrained_keras(MODEL_CKPT)

# model = keras_cv.models.StableDiffusion(
#     img_width=img_width, img_height=img_height, jit_compile=True
# )
# model._text_encoder = MODEL
# model._text_encoder.compile(jit_compile=True)

# # Warm-up the model.
# _ = model.text_to_image("Teddy bear", batch_size=num_images_to_gen)

def generate_image_fn(prompt: str, unconditional_guidance_scale: int) -> list:
    start_time = time.time()
    # `images is an `np.ndarray`. So we convert it to a list of ndarrays.
    # Each ndarray represents a generated image.
    # Reference: https://gradio.app/docs/#gallery
    images = model.text_to_image(
        prompt,
        batch_size=num_images_to_gen,
        unconditional_guidance_scale=unconditional_guidance_scale,
    )
    end_time = time.time()
    print(f"Time taken: {end_time - start_time} seconds.")
    return [image for image in images]

demoInterface = gr.Interface(
    generate_image_fn,
    inputs=[
        gr.Textbox(
            label="Enter your prompt",
            max_lines=1,
#            placeholder="cute Sundar Pichai creature",
        ),
        gr.Slider(value=40, minimum=8, maximum=50, step=1),
    ],
    outputs=gr.Gallery().style(grid=[2], height="auto"),
    # examples=[["cute Sundar Pichai creature", 8], ["Hello kitty", 8]],
    allow_flagging=False,
)

def avaliable_providers():
    providers = []
    
    headers = {
        "Content-Type": "application/json",
    }
    endpoint_url = "https://api.endpoints.huggingface.cloud/provider"
    response = requests.get(endpoint_url, headers=headers)

    for provider in response.json()['items']:
        if provider['status'] == 'avaliable':
            providers.append(provider['vendor'])
    
    return providers
    

with gr.Blocks() as demo:
    gr.Markdown(
    """
    # Your own Stable Diffusion on Google Cloud Platform
    """)
    
    with gr.Row():
        gcp_project_id = gr.Textbox(
            label="GCP project ID",
        )
        gcp_region = gr.Dropdown(
            ["us-central1", "asia‑east1", "asia-northeast1"],
            value="us-central1",
            interactive=True,
            label="GCP Region"
        )

    gr.Markdown(
    """
    Configurations on scalability
    """)        
    with gr.Row():
        min_nodes = gr.Slider(
            label="minimum number of nodes",
            minimum=1,
            maximum=10)
        
        max_nodes = gr.Slider(
            label="maximum number of nodes",
            minimum=1,
            maximum=10)
    
    btn = gr.Button(value="Ready to Deploy!")
    # btn.click(mirror, inputs=[im], outputs=[im_2])    

def update_regions(provider):
    avalialbe_regions = []
    
    headers = {
        "Content-Type": "application/json",
    }
    endpoint_url = f"https://api.endpoints.huggingface.cloud/provider/{provider}/region"
    response = requests.get(endpoint_url, headers=headers)

    for region in response.json()['items']:
        if region['status'] == 'avaliable':
            avalialbe_regions.append(f"{region['region']}/{region['label']}")

    return gr.Dropdown.update(
        choices=avalialbe_regions,
        value=avalialbe_regions[0] if len(avalialbe_regions) > 0 else None
    )

def update_compute_options(provider, regeion):
    avalialbe_compute_options = []

    headers = {
        "Content-Type": "application/json",
    }
    endpoint_url = f"https://api.endpoints.huggingface.cloud/provider/{provider}/region/{region}/compute"
    response = requests.get(endpoint_url, headers=headers)

    for compute in response.json()['items']:
        if compute['status'] == 'avaliable':
            type = f"{compute['numAccelerators']}vCPU {compute['memoryGb'].replace("Gi", "GB")} · {compute['architecture']}" 
                   if compute['accelerator'] == "cpu"
                   else  f"{compute['numAccelerators']x {compute['architecture']}}"
            
            avalialbe_compute_options.append(
                f"{compute['accelerator'].upper()} [{compute['instanceSize']}] · {type}"
            )

    return gr.Dropdown.update(
        choices=avalialbe_compute_options,
        value=avalialbe_compute_options[0] if len(avalialbe_compute_options) > 0 else None
    )


with gr.Blocks() as demo2:
    gr.Markdown(
    """
    ## Your own Stable Diffusion on Hugging Face 🤗 Endpoint
    """)
    hf_token_input = gr.Textbox(
        label="enter your Hugging Face Access Token"
    )
        
    providers = avaliable_providers()
    
    with gr.Row():
        provider_selector = gr.Dropdown(
            providers
            label="select cloud provider",
            interactive=True,
        )
        
        region_selector = gr.Dropdown(
            [],
            value="",
            interactive=True,
            label="select a region"
        )
        
        provider_selector.change(update_regions, inputs=provider_selector, outputs=region_selector)

    compute_selector = gr.Dropdown(
        [],
        value="",
        label="select compute instance type"
        interactive=True
    )
    region_selector.change(update_compute_options, inputs=[provider_selector, region_selector], outputs=compute_selector)

gr.TabbedInterface(
    [demoInterface, demo, demo2], ["Try-out", "🚀 Deploy on GCP", " Deploy on 🤗 Endpoint"]
).launch(enable_queue=True)