File size: 2,988 Bytes
2150dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
cc36806
 
d9cf71a
 
2150dbe
d9cf71a
 
 
 
 
2150dbe
d9cf71a
 
2150dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
435eeff
2150dbe
 
 
 
 
 
 
 
 
 
d9cf71a
2150dbe
435eeff
 
e2419ee
 
 
cb9bbbd
 
 
b9ba013
cb9bbbd
870ee21
 
b96e226
 
 
6d90bf4
870ee21
f8d1449
1e7407e
 
6d90bf4
6c907be
 
 
43b249a
 
 
 
 
6d90bf4
43b249a
 
 
 
6d90bf4
43b249a
6c907be
 
 
435eeff
91cc668
 
 
b9ba013
 
91cc668
435eeff
4f44913
2150dbe
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
"""
Adapted from https://huggingface.co/spaces/stabilityai/stable-diffusion
"""

from tensorflow import keras

import time

import gradio as gr
import keras_cv

from constants import css, examples, img_height, img_width, num_images_to_gen
from share_btn import community_icon_html, loading_icon_html, share_js

from huggingface_hub import from_pretrained_keras

# MODEL_CKPT = "chansung/textual-inversion-pipeline@v1673026791"
# MODEL = from_pretrained_keras(MODEL_CKPT)

# model = keras_cv.models.StableDiffusion(
#     img_width=img_width, img_height=img_height, jit_compile=True
# )
# model._text_encoder = MODEL
# model._text_encoder.compile(jit_compile=True)

# # Warm-up the model.
# _ = model.text_to_image("Teddy bear", batch_size=num_images_to_gen)

def generate_image_fn(prompt: str, unconditional_guidance_scale: int) -> list:
    start_time = time.time()
    # `images is an `np.ndarray`. So we convert it to a list of ndarrays.
    # Each ndarray represents a generated image.
    # Reference: https://gradio.app/docs/#gallery
    images = model.text_to_image(
        prompt,
        batch_size=num_images_to_gen,
        unconditional_guidance_scale=unconditional_guidance_scale,
    )
    end_time = time.time()
    print(f"Time taken: {end_time - start_time} seconds.")
    return [image for image in images]

demoInterface = gr.Interface(
    generate_image_fn,
    inputs=[
        gr.Textbox(
            label="Enter your prompt",
            max_lines=1,
#            placeholder="cute Sundar Pichai creature",
        ),
        gr.Slider(value=40, minimum=8, maximum=50, step=1),
    ],
    outputs=gr.Gallery().style(grid=[2], height="auto"),
    # examples=[["cute Sundar Pichai creature", 8], ["Hello kitty", 8]],
    allow_flagging=False,
)

def welcome(name):
    return f"Welcome to Gradio, {name}!"

with gr.Blocks() as demo:
    gr.Markdown(
    """
    # Your own Stable Diffusion on Google Cloud Platform
    """)
    
    with gr.Row():
        gcp_project_id = gr.Textbox(
            label="GCP project ID",
        )
        gcp_region = gr.Dropdown(
            ["us-central1", "asia‑east1", "asia-northeast1"],
            value="us-central1",
            interactive=True,
            label="GCP Region"
        )

    gr.Markdown(
    """
    Configurations on scalability
    """)        
    with gr.Row():
        min_nodes = gr.Slider(
            label="minimum number of nodes",
            minimum=1,
            maximum=10)
        
        max_nodes = gr.Slider(
            label="maximum number of nodes",
            minimum=1,
            maximum=10)
    
    btn = gr.Button(value="Ready to Deploy!")
    # btn.click(mirror, inputs=[im], outputs=[im_2])    

with gr.Blocks() as demo2:
    gr.Markdown(
    """
    # Your own Stable Diffusion on Hugging Face 🤗 Endpoint
    """)    

gr.TabbedInterface(
    [demoInterface, demo, demo2], ["Try-out", "🚀 Deploy on GCP", " Deploy on 🤗 Endpoint"]
).launch(enable_queue=True)