Spaces:
Runtime error
Runtime error
File size: 7,529 Bytes
2150dbe cc36806 aaaaf5b cc36806 17f4658 d9cf71a 2150dbe d9cf71a 2150dbe d9cf71a 2150dbe 435eeff 2150dbe d9cf71a 2150dbe 435eeff df18ce5 e36fe0e df18ce5 cb9bbbd b9ba013 cb9bbbd 870ee21 b96e226 6d90bf4 870ee21 f8d1449 1e7407e 6d90bf4 6c907be 43b249a 6d90bf4 43b249a 6d90bf4 43b249a 6c907be 435eeff 6cb38e5 df18ce5 b0d1eb8 df18ce5 e36fe0e 74ce338 df18ce5 6a49dde cf09261 6a49dde 86623e4 9fadc32 c7dece5 b7fa83a c7dece5 9fa8e7f b7fa83a e36fe0e 7cb4641 4e11486 7cb4641 32e7a76 b7fa83a 32e7a76 b7fa83a 32e7a76 91cc668 b7fa83a df18ce5 e36fe0e ebef5c0 90183ac df18ce5 9bc0636 90183ac df18ce5 eee84de df18ce5 5c5a6a5 ce96db4 df18ce5 ce96db4 df18ce5 79858a5 32e7a76 ebef5c0 aaaaf5b ebef5c0 aaaaf5b ebef5c0 56dd252 ebef5c0 073c8a4 79858a5 28e4180 681c717 9b99456 28e4180 681c717 435eeff 4f44913 2150dbe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
"""
Adapted from https://huggingface.co/spaces/stabilityai/stable-diffusion
"""
from tensorflow import keras
import time
import gradio as gr
import keras_cv
from constants import css, examples, img_height, img_width, num_images_to_gen
from share_btn import community_icon_html, loading_icon_html, share_js
from huggingface_hub import from_pretrained_keras
from huggingface_hub import Repository
import requests
# MODEL_CKPT = "chansung/textual-inversion-pipeline@v1673026791"
# MODEL = from_pretrained_keras(MODEL_CKPT)
# model = keras_cv.models.StableDiffusion(
# img_width=img_width, img_height=img_height, jit_compile=True
# )
# model._text_encoder = MODEL
# model._text_encoder.compile(jit_compile=True)
# # Warm-up the model.
# _ = model.text_to_image("Teddy bear", batch_size=num_images_to_gen)
def generate_image_fn(prompt: str, unconditional_guidance_scale: int) -> list:
start_time = time.time()
# `images is an `np.ndarray`. So we convert it to a list of ndarrays.
# Each ndarray represents a generated image.
# Reference: https://gradio.app/docs/#gallery
images = model.text_to_image(
prompt,
batch_size=num_images_to_gen,
unconditional_guidance_scale=unconditional_guidance_scale,
)
end_time = time.time()
print(f"Time taken: {end_time - start_time} seconds.")
return [image for image in images]
demoInterface = gr.Interface(
generate_image_fn,
inputs=[
gr.Textbox(
label="Enter your prompt",
max_lines=1,
# placeholder="cute Sundar Pichai creature",
),
gr.Slider(value=40, minimum=8, maximum=50, step=1),
],
outputs=gr.Gallery().style(grid=[2], height="auto"),
# examples=[["cute Sundar Pichai creature", 8], ["Hello kitty", 8]],
allow_flagging=False,
)
def avaliable_providers():
providers = []
headers = {
"Content-Type": "application/json",
}
endpoint_url = "https://api.endpoints.huggingface.cloud/provider"
response = requests.get(endpoint_url, headers=headers)
for provider in response.json()['items']:
if provider['status'] == 'available':
providers.append(provider['vendor'])
return providers
with gr.Blocks() as demo:
gr.Markdown(
"""
# Your own Stable Diffusion on Google Cloud Platform
""")
with gr.Row():
gcp_project_id = gr.Textbox(
label="GCP project ID",
)
gcp_region = gr.Dropdown(
["us-central1", "asia‑east1", "asia-northeast1"],
value="us-central1",
interactive=True,
label="GCP Region"
)
gr.Markdown(
"""
Configurations on scalability
""")
with gr.Row():
min_nodes = gr.Slider(
label="minimum number of nodes",
minimum=1,
maximum=10)
max_nodes = gr.Slider(
label="maximum number of nodes",
minimum=1,
maximum=10)
btn = gr.Button(value="Ready to Deploy!")
# btn.click(mirror, inputs=[im], outputs=[im_2])
def update_regions(provider):
avalialbe_regions = []
headers = {
"Content-Type": "application/json",
}
endpoint_url = f"https://api.endpoints.huggingface.cloud/provider/{provider}/region"
response = requests.get(endpoint_url, headers=headers)
for region in response.json()['items']:
if region['status'] == 'available':
avalialbe_regions.append(f"{region['region']}/{region['label']}")
return gr.Dropdown.update(
choices=avalialbe_regions,
value=avalialbe_regions[0] if len(avalialbe_regions) > 0 else None
)
def update_compute_options(provider, region):
region = region.split("/")[0]
avalialbe_compute_options = []
headers = {
"Content-Type": "application/json",
}
endpoint_url = f"https://api.endpoints.huggingface.cloud/provider/{provider}/region/{region}/compute"
print(endpoint_url)
response = requests.get(endpoint_url, headers=headers)
for compute in response.json()['items']:
if compute['status'] == 'available':
accelerator = compute['accelerator']
numAccelerators = compute['numAccelerators']
memoryGb = compute['memoryGb'].replace("Gi", "GB")
architecture = compute['architecture']
type = f"{numAccelerators}vCPU {memoryGb} · {architecture}" if accelerator == "cpu" else f"{numAccelerators}x {architecture}"
avalialbe_compute_options.append(
f"{compute['accelerator'].upper()} [{compute['instanceSize']}] · {type}"
)
return gr.Dropdown.update(
choices=avalialbe_compute_options,
value=avalialbe_compute_options[0] if len(avalialbe_compute_options) > 0 else None
)
with gr.Blocks() as demo2:
gr.Markdown(
"""
## Your own Stable Diffusion on Hugging Face 🤗 Endpoint
""")
hf_token_input = gr.Textbox(
label="enter your Hugging Face Access Token"
)
endpoint_name_input = gr.Textbox(
label="enter the Endpoint name"
)
providers = avaliable_providers()
head_sha = "2a520e132597a810e396ca28805d98ce56ec3544"
with gr.Row():
provider_selector = gr.Dropdown(
choices=providers,
label="select cloud provider",
interactive=True,
)
region_selector = gr.Dropdown(
[],
value="",
interactive=True,
label="select a region"
)
provider_selector.change(update_regions, inputs=provider_selector, outputs=region_selector)
with gr.Row():
repository_selector = gr.Textbox(
value="my-funny-cat",
interactive=False,
label="target repository"
)
repository_selector = gr.Textbox(
value=f"v1673257770/{head_sha[:7]}",
interactive=False,
label="model version(branch)"
)
with gr.Row():
task_selector = gr.Textbox(
value="Custom",
interactive=False,
label="task"
)
framework_selector = gr.Textbox(
value="TensorFlow",
interactive=False,
label="framework"
)
compute_selector = gr.Dropdown(
[],
value="",
label="select compute instance type",
interactive=True
)
region_selector.change(update_compute_options, inputs=[provider_selector, region_selector], outputs=compute_selector)
with gr.Row():
min_node_selector = gr.Number(
value=1,
label="select min number of nodes",
interactive=True,
)
max_node_selector = gr.Number(
value=1,
label="select max number of nodes",
interactive=True,
)
security_selector = gr.Radio(
choices=["Protected", "Public", "Private"],
value="Public",
label="select security level",
interactive=True,
)
submit_button = gr.Button(
value="Submit",
)
status_txt = gr.Textbox(
value="any status update will be displayed here"
interactive=False
)
gr.TabbedInterface(
[demoInterface, demo, demo2], ["Try-out", "🚀 Deploy on GCP", " Deploy on 🤗 Endpoint"]
).launch(enable_queue=True) |