Spaces:
Runtime error
Runtime error
File size: 10,151 Bytes
2150dbe cc36806 aaaaf5b cc36806 17f4658 d9cf71a 2150dbe d9cf71a 2150dbe d9cf71a 2150dbe 87c2385 2150dbe 435eeff 2150dbe d9cf71a 2150dbe 435eeff df18ce5 e36fe0e df18ce5 cb9bbbd b9ba013 cb9bbbd 870ee21 b96e226 6d90bf4 870ee21 f8d1449 1e7407e 6d90bf4 6c907be 43b249a 6d90bf4 43b249a 6d90bf4 43b249a 6c907be 435eeff 6cb38e5 df18ce5 b0d1eb8 df18ce5 e36fe0e 74ce338 df18ce5 6a49dde cf09261 6a49dde 86623e4 9fadc32 c7dece5 b7fa83a c7dece5 9fa8e7f b7fa83a e36fe0e 7cb4641 4e11486 edf2c37 4e11486 7cb4641 32e7a76 b7fa83a edf2c37 b7fa83a 32e7a76 7f580d8 cd78e86 7f580d8 e94ebbd 6c915b9 7f580d8 e94ebbd 7f580d8 e94ebbd 7f580d8 87c2385 7f580d8 91cc668 c7ae088 849c56b df18ce5 661dabd e36fe0e c7ae088 e36fe0e ebef5c0 661dabd ebef5c0 661dabd ebef5c0 90183ac df18ce5 849c56b c64a109 849c56b c64a109 849c56b 90183ac df18ce5 eee84de df18ce5 849c56b df18ce5 5c5a6a5 ce96db4 df18ce5 849c56b df18ce5 79858a5 32e7a76 c64a109 ebef5c0 aaaaf5b edf2c37 ebef5c0 c64a109 ebef5c0 adf0682 edf2c37 ebef5c0 c64a109 ebef5c0 56dd252 c64a109 56dd252 c64a109 56dd252 c7ae088 56dd252 c64a109 56dd252 c64a109 ebef5c0 c64a109 073c8a4 c64a109 073c8a4 79858a5 c64a109 28e4180 c64a109 28e4180 c64a109 28e4180 681c717 c64a109 681c717 9b99456 28e4180 7f580d8 28e4180 681c717 03228f7 681c717 435eeff 875ba54 2150dbe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 |
"""
Adapted from https://huggingface.co/spaces/stabilityai/stable-diffusion
"""
from tensorflow import keras
import time
import gradio as gr
import keras_cv
from constants import css, examples, img_height, img_width, num_images_to_gen
from share_btn import community_icon_html, loading_icon_html, share_js
from huggingface_hub import from_pretrained_keras
from huggingface_hub import Repository
import requests
# MODEL_CKPT = "chansung/textual-inversion-pipeline@v1673026791"
# MODEL = from_pretrained_keras(MODEL_CKPT)
# model = keras_cv.models.StableDiffusion(
# img_width=img_width, img_height=img_height, jit_compile=True
# )
# model._text_encoder = MODEL
# model._text_encoder.compile(jit_compile=True)
# # Warm-up the model.
# _ = model.text_to_image("Teddy bear", batch_size=num_images_to_gen)
head_sha = "398e79c789669981a2ab1da1fbdafc3998c7b08a"
def generate_image_fn(prompt: str, unconditional_guidance_scale: int) -> list:
start_time = time.time()
# `images is an `np.ndarray`. So we convert it to a list of ndarrays.
# Each ndarray represents a generated image.
# Reference: https://gradio.app/docs/#gallery
images = model.text_to_image(
prompt,
batch_size=num_images_to_gen,
unconditional_guidance_scale=unconditional_guidance_scale,
)
end_time = time.time()
print(f"Time taken: {end_time - start_time} seconds.")
return [image for image in images]
demoInterface = gr.Interface(
generate_image_fn,
inputs=[
gr.Textbox(
label="Enter your prompt",
max_lines=1,
# placeholder="cute Sundar Pichai creature",
),
gr.Slider(value=40, minimum=8, maximum=50, step=1),
],
outputs=gr.Gallery().style(grid=[2], height="auto"),
# examples=[["cute Sundar Pichai creature", 8], ["Hello kitty", 8]],
allow_flagging=False,
)
def avaliable_providers():
providers = []
headers = {
"Content-Type": "application/json",
}
endpoint_url = "https://api.endpoints.huggingface.cloud/provider"
response = requests.get(endpoint_url, headers=headers)
for provider in response.json()['items']:
if provider['status'] == 'available':
providers.append(provider['vendor'])
return providers
with gr.Blocks() as demo:
gr.Markdown(
"""
# Your own Stable Diffusion on Google Cloud Platform
""")
with gr.Row():
gcp_project_id = gr.Textbox(
label="GCP project ID",
)
gcp_region = gr.Dropdown(
["us-central1", "asia鈥慹ast1", "asia-northeast1"],
value="us-central1",
interactive=True,
label="GCP Region"
)
gr.Markdown(
"""
Configurations on scalability
""")
with gr.Row():
min_nodes = gr.Slider(
label="minimum number of nodes",
minimum=1,
maximum=10)
max_nodes = gr.Slider(
label="maximum number of nodes",
minimum=1,
maximum=10)
btn = gr.Button(value="Ready to Deploy!")
# btn.click(mirror, inputs=[im], outputs=[im_2])
def update_regions(provider):
avalialbe_regions = []
headers = {
"Content-Type": "application/json",
}
endpoint_url = f"https://api.endpoints.huggingface.cloud/provider/{provider}/region"
response = requests.get(endpoint_url, headers=headers)
for region in response.json()['items']:
if region['status'] == 'available':
avalialbe_regions.append(f"{region['region']}/{region['label']}")
return gr.Dropdown.update(
choices=avalialbe_regions,
value=avalialbe_regions[0] if len(avalialbe_regions) > 0 else None
)
def update_compute_options(provider, region):
region = region.split("/")[0]
avalialbe_compute_options = []
headers = {
"Content-Type": "application/json",
}
endpoint_url = f"https://api.endpoints.huggingface.cloud/provider/{provider}/region/{region}/compute"
print(endpoint_url)
response = requests.get(endpoint_url, headers=headers)
for compute in response.json()['items']:
if compute['status'] == 'available':
accelerator = compute['accelerator']
numAccelerators = compute['numAccelerators']
memoryGb = compute['memoryGb'].replace("Gi", "GB")
architecture = compute['architecture']
instanceType = compute['instanceType']
type = f"{numAccelerators}vCPU {memoryGb} 路 {architecture}" if accelerator == "cpu" else f"{numAccelerators}x {architecture}"
avalialbe_compute_options.append(
f"{compute['accelerator'].upper()} [{compute['instanceSize']}] 路 {type} 路 {instanceType}"
)
return gr.Dropdown.update(
choices=avalialbe_compute_options,
value=avalialbe_compute_options[0] if len(avalialbe_compute_options) > 0 else None
)
def submit(
hf_token_input,
endpoint_name_input,
provider_selector,
region_selector,
repository_selector,
task_selector,
framework_selector,
compute_selector,
min_node_selector,
max_node_selector,
security_selector
):
compute_resources = compute_selector.split("路")
accelerator = compute_resources[0][:3].strip()
size_l_index = compute_resources[0].index("[") - 1
size_r_index = compute_resources[0].index("]")
size = compute_resources[0][size_l_index : size_r_index].strip()
print(size[1:])
type = compute_resources[-1].strip()
payload = {
"accountId": hf_token_input,
"compute": {
"accelerator": accelerator,
"instanceSize": size,
"instanceType": type,
"scaling": {
"maxReplica": int(max_node_selector),
"minReplica": int(min_node_selector)
}
},
"model": {
"framework": framework_selector.lower(),
"image": {
"huggingface": {}
},
"repository": repository_selector.lower(),
"revision": head_sha,
"task": task_selector.lower()
},
"name": endpoint_name_input,
"provider": {
"region": region_selector.split("/")[0].lower(),
"vendor": provider_selector.lower()
},
"type": security_selector.lower()
}
print(payload)
with gr.Blocks() as demo2:
gr.Markdown(
"""
## Deploy Stable Diffusion on 馃 Endpoint
---
""")
gr.Markdown("""
#### Your 馃 Access Token
""")
hf_token_input = gr.Textbox(
show_label=False
)
gr.Markdown("""
#### Decide the Endpoint name
""")
endpoint_name_input = gr.Textbox(
show_label=False
)
providers = avaliable_providers()
with gr.Row():
gr.Markdown("""
#### Cloud Provider
""")
gr.Markdown("""
#### Cloud Region
""")
with gr.Row():
provider_selector = gr.Dropdown(
choices=providers,
interactive=True,
show_label=False,
)
region_selector = gr.Dropdown(
[],
value="",
interactive=True,
show_label=False,
)
provider_selector.change(update_regions, inputs=provider_selector, outputs=region_selector)
with gr.Row():
gr.Markdown("""
#### Target Model
""")
gr.Markdown("""
#### Target Model Version(branch)
""")
with gr.Row():
repository_selector = gr.Textbox(
value="chansung/my-kitty",
interactive=False,
show_label=False,
)
revision_selector = gr.Textbox(
value=f"v1673365013/{head_sha[:7]}",
interactive=False,
show_label=False,
)
with gr.Row():
gr.Markdown("""
#### Task
""")
gr.Markdown("""
#### Framework
""")
with gr.Row():
task_selector = gr.Textbox(
value="Custom",
interactive=False,
show_label=False,
)
framework_selector = gr.Textbox(
value="TensorFlow",
interactive=False,
show_label=False,
)
gr.Markdown("""
#### Select Compute Instance Type
""")
compute_selector = gr.Dropdown(
[],
value="",
interactive=True,
show_label=False,
)
region_selector.change(update_compute_options, inputs=[provider_selector, region_selector], outputs=compute_selector)
with gr.Row():
gr.Markdown("""
#### Min Number of Nodes
""")
gr.Markdown("""
#### Max Number of Nodes
""")
gr.Markdown("""
#### Security Level
""")
with gr.Row():
min_node_selector = gr.Number(
value=1,
interactive=True,
show_label=False,
)
max_node_selector = gr.Number(
value=1,
interactive=True,
show_label=False,
)
security_selector = gr.Radio(
choices=["Protected", "Public", "Private"],
value="Public",
interactive=True,
show_label=False,
)
submit_button = gr.Button(
value="Submit",
)
submit_button.click(
submit,
inputs=[
hf_token_input,
endpoint_name_input,
provider_selector,
region_selector,
repository_selector,
task_selector,
framework_selector,
compute_selector,
min_node_selector,
max_node_selector,
security_selector])
status_txt = gr.Textbox(
value="any status update will be displayed here",
interactive=False
)
gr.TabbedInterface(
[demo2], ["Deploy on 馃 Endpoint"]
).launch(enable_queue=True) |