Spaces:
Runtime error
Runtime error
File size: 5,495 Bytes
2150dbe cc36806 17f4658 d9cf71a 2150dbe d9cf71a 2150dbe d9cf71a 2150dbe 435eeff 2150dbe d9cf71a 2150dbe 435eeff df18ce5 b7fa83a df18ce5 cb9bbbd b9ba013 cb9bbbd 870ee21 b96e226 6d90bf4 870ee21 f8d1449 1e7407e 6d90bf4 6c907be 43b249a 6d90bf4 43b249a 6d90bf4 43b249a 6c907be 435eeff 6cb38e5 df18ce5 b0d1eb8 df18ce5 b7fa83a 74ce338 df18ce5 6a49dde cf09261 6a49dde 86623e4 b7fa83a 91cc668 b7fa83a df18ce5 4d82a73 90183ac df18ce5 90183ac df18ce5 5c5a6a5 ce96db4 df18ce5 ce96db4 df18ce5 6cb38e5 9ce3310 79858a5 435eeff 4f44913 2150dbe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
"""
Adapted from https://huggingface.co/spaces/stabilityai/stable-diffusion
"""
from tensorflow import keras
import time
import gradio as gr
import keras_cv
from constants import css, examples, img_height, img_width, num_images_to_gen
from share_btn import community_icon_html, loading_icon_html, share_js
from huggingface_hub import from_pretrained_keras
import requests
# MODEL_CKPT = "chansung/textual-inversion-pipeline@v1673026791"
# MODEL = from_pretrained_keras(MODEL_CKPT)
# model = keras_cv.models.StableDiffusion(
# img_width=img_width, img_height=img_height, jit_compile=True
# )
# model._text_encoder = MODEL
# model._text_encoder.compile(jit_compile=True)
# # Warm-up the model.
# _ = model.text_to_image("Teddy bear", batch_size=num_images_to_gen)
def generate_image_fn(prompt: str, unconditional_guidance_scale: int) -> list:
start_time = time.time()
# `images is an `np.ndarray`. So we convert it to a list of ndarrays.
# Each ndarray represents a generated image.
# Reference: https://gradio.app/docs/#gallery
images = model.text_to_image(
prompt,
batch_size=num_images_to_gen,
unconditional_guidance_scale=unconditional_guidance_scale,
)
end_time = time.time()
print(f"Time taken: {end_time - start_time} seconds.")
return [image for image in images]
demoInterface = gr.Interface(
generate_image_fn,
inputs=[
gr.Textbox(
label="Enter your prompt",
max_lines=1,
# placeholder="cute Sundar Pichai creature",
),
gr.Slider(value=40, minimum=8, maximum=50, step=1),
],
outputs=gr.Gallery().style(grid=[2], height="auto"),
# examples=[["cute Sundar Pichai creature", 8], ["Hello kitty", 8]],
allow_flagging=False,
)
def avaliable_providers():
providers = []
headers = {
"Content-Type": "application/json",
}
endpoint_url = "https://api.endpoints.huggingface.cloud/provider"
response = requests.get(endpoint_url, headers=headers)
for provider in response.json()['items']:
if provider['status'] == 'avaliable':
providers.append(provider['vendor'])
return providers
with gr.Blocks() as demo:
gr.Markdown(
"""
# Your own Stable Diffusion on Google Cloud Platform
""")
with gr.Row():
gcp_project_id = gr.Textbox(
label="GCP project ID",
)
gcp_region = gr.Dropdown(
["us-central1", "asia‑east1", "asia-northeast1"],
value="us-central1",
interactive=True,
label="GCP Region"
)
gr.Markdown(
"""
Configurations on scalability
""")
with gr.Row():
min_nodes = gr.Slider(
label="minimum number of nodes",
minimum=1,
maximum=10)
max_nodes = gr.Slider(
label="maximum number of nodes",
minimum=1,
maximum=10)
btn = gr.Button(value="Ready to Deploy!")
# btn.click(mirror, inputs=[im], outputs=[im_2])
def update_regions(provider):
avalialbe_regions = []
headers = {
"Content-Type": "application/json",
}
endpoint_url = f"https://api.endpoints.huggingface.cloud/provider/{provider}/region"
response = requests.get(endpoint_url, headers=headers)
for region in response.json()['items']:
if region['status'] == 'avaliable':
avalialbe_regions.append(f"{region['region']}/{region['label']}")
return gr.Dropdown.update(
choices=avalialbe_regions,
value=avalialbe_regions[0] if len(avalialbe_regions) > 0 else None
)
def update_compute_options(provider, regeion):
# CPU [medium] · 2vCPU 4GB · Intel Ice Lake
# 'https://api.endpoints.huggingface.cloud/provider/aws/region/us-east-1/compute'
"""
"accelerator": "cpu",
"numAccelerators": 1,
"memoryGb": "2Gi",
"instanceType": "c6i",
"instanceSize": "small",
"architecture": "Intel Ice Lake",
"status": "available",
"pricePerHour": 0.06
"""
avalialbe_compute_options = []
headers = {
"Content-Type": "application/json",
}
endpoint_url = f"https://api.endpoints.huggingface.cloud/provider/{provider}/region/{region}/compute"
response = requests.get(endpoint_url, headers=headers)
for compute in response.json()['items']:
if compute['status'] == 'avaliable':
avalialbe_compute_options.append(
f"{compute['accelerator'].upper()} []"
)
with gr.Blocks() as demo2:
gr.Markdown(
"""
## Your own Stable Diffusion on Hugging Face 🤗 Endpoint
""")
hf_token_input = gr.Textbox(
label="enter your Hugging Face Access Token"
)
providers = avaliable_providers()
with gr.Row():
provider_selector = gr.Dropdown(
label="select cloud provider",
interactive=True,
choices=providers
)
region_selector = gr.Dropdown(
[],
value="",
interactive=True,
label="select a region"
)
provider_selector.change(update_regions, inputs=provider_selector, outputs=region_selector)
# region_selector.update(interactive=True)
gr.TabbedInterface(
[demoInterface, demo, demo2], ["Try-out", "🚀 Deploy on GCP", " Deploy on 🤗 Endpoint"]
).launch(enable_queue=True) |