File size: 12,816 Bytes
2150dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
cc36806
aaaaf5b
cc36806
b05b43f
17f4658
 
d9cf71a
 
2150dbe
d9cf71a
 
 
 
 
2150dbe
d9cf71a
 
2150dbe
87c2385
 
2150dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
435eeff
2150dbe
 
 
 
 
 
 
 
 
 
d9cf71a
2150dbe
435eeff
 
df18ce5
 
 
 
 
 
 
 
 
 
e36fe0e
df18ce5
 
 
 
 
cb9bbbd
 
 
b9ba013
cb9bbbd
870ee21
 
b96e226
 
 
6d90bf4
870ee21
f8d1449
1e7407e
 
6d90bf4
6c907be
 
 
43b249a
 
 
 
 
6d90bf4
43b249a
 
 
 
6d90bf4
43b249a
6c907be
 
 
435eeff
6cb38e5
df18ce5
 
 
 
 
b0d1eb8
df18ce5
 
 
e36fe0e
74ce338
df18ce5
6a49dde
cf09261
6a49dde
 
86623e4
9fadc32
c7dece5
b7fa83a
 
 
 
 
c7dece5
9fa8e7f
b7fa83a
 
 
e36fe0e
7cb4641
4e11486
 
 
edf2c37
4e11486
7cb4641
32e7a76
b7fa83a
edf2c37
b7fa83a
 
32e7a76
 
 
 
 
7f580d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd78e86
7f580d8
e94ebbd
7f580d8
 
 
bbb7e21
29b6f8f
7f580d8
e481158
29b6f8f
 
7f580d8
29b6f8f
 
7f580d8
 
 
9ab7cc1
7f580d8
 
 
9459ed9
29b6f8f
 
7f580d8
29b6f8f
7f580d8
29b6f8f
 
7f580d8
29b6f8f
7f580d8
31bb77c
7f580d8
 
01e5eae
 
 
99c8ad0
 
 
 
 
 
 
0f98ecb
99c8ad0
 
bcda1ab
99c8ad0
 
 
 
7d0c7ce
 
4b9dacd
5039577
99c8ad0
91cc668
 
 
c7ae088
849c56b
df18ce5
661dabd
 
 
 
 
e36fe0e
29b6f8f
 
e36fe0e
ebef5c0
661dabd
 
 
ebef5c0
661dabd
ebef5c0
90183ac
df18ce5
849c56b
 
 
c64a109
849c56b
 
 
c64a109
849c56b
90183ac
df18ce5
 
eee84de
df18ce5
849c56b
df18ce5
 
 
5c5a6a5
ce96db4
df18ce5
849c56b
df18ce5
79858a5
32e7a76
 
c64a109
 
 
 
 
 
 
 
 
ebef5c0
aaaaf5b
edf2c37
ebef5c0
c64a109
ebef5c0
 
adf0682
edf2c37
ebef5c0
c64a109
ebef5c0
56dd252
c64a109
 
 
 
 
 
 
 
 
56dd252
 
 
 
c64a109
56dd252
 
c7ae088
 
56dd252
c64a109
56dd252
c64a109
 
ebef5c0
c64a109
 
073c8a4
 
 
c64a109
 
073c8a4
 
79858a5
c64a109
 
 
 
 
 
 
 
 
 
 
 
 
28e4180
 
 
 
c64a109
28e4180
 
 
 
 
c64a109
28e4180
 
681c717
 
 
 
c64a109
681c717
9b99456
28e4180
 
 
99c8ad0
 
 
 
 
 
7f580d8
 
 
 
 
 
 
 
 
 
 
 
 
99c8ad0
 
681c717
93685cc
 
 
 
 
 
4ac49ab
93685cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ac49ab
93685cc
 
 
 
 
 
 
 
 
 
 
 
435eeff
875ba54
2150dbe
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
"""
Adapted from https://huggingface.co/spaces/stabilityai/stable-diffusion
"""

from tensorflow import keras

import time

import gradio as gr
import keras_cv

from constants import css, examples, img_height, img_width, num_images_to_gen
from share_btn import community_icon_html, loading_icon_html, share_js

from huggingface_hub import from_pretrained_keras
from huggingface_hub import Repository

import json
import requests

# MODEL_CKPT = "chansung/textual-inversion-pipeline@v1673026791"
# MODEL = from_pretrained_keras(MODEL_CKPT)

# model = keras_cv.models.StableDiffusion(
#     img_width=img_width, img_height=img_height, jit_compile=True
# )
# model._text_encoder = MODEL
# model._text_encoder.compile(jit_compile=True)

# # Warm-up the model.
# _ = model.text_to_image("Teddy bear", batch_size=num_images_to_gen)

head_sha = "398e79c789669981a2ab1da1fbdafc3998c7b08a"

def generate_image_fn(prompt: str, unconditional_guidance_scale: int) -> list:
    start_time = time.time()
    # `images is an `np.ndarray`. So we convert it to a list of ndarrays.
    # Each ndarray represents a generated image.
    # Reference: https://gradio.app/docs/#gallery
    images = model.text_to_image(
        prompt,
        batch_size=num_images_to_gen,
        unconditional_guidance_scale=unconditional_guidance_scale,
    )
    end_time = time.time()
    print(f"Time taken: {end_time - start_time} seconds.")
    return [image for image in images]

demoInterface = gr.Interface(
    generate_image_fn,
    inputs=[
        gr.Textbox(
            label="Enter your prompt",
            max_lines=1,
#            placeholder="cute Sundar Pichai creature",
        ),
        gr.Slider(value=40, minimum=8, maximum=50, step=1),
    ],
    outputs=gr.Gallery().style(grid=[2], height="auto"),
    # examples=[["cute Sundar Pichai creature", 8], ["Hello kitty", 8]],
    allow_flagging=False,
)

def avaliable_providers():
    providers = []
    
    headers = {
        "Content-Type": "application/json",
    }
    endpoint_url = "https://api.endpoints.huggingface.cloud/provider"
    response = requests.get(endpoint_url, headers=headers)

    for provider in response.json()['items']:
        if provider['status'] == 'available':
            providers.append(provider['vendor'])
    
    return providers
    

with gr.Blocks() as demo:
    gr.Markdown(
    """
    # Your own Stable Diffusion on Google Cloud Platform
    """)
    
    with gr.Row():
        gcp_project_id = gr.Textbox(
            label="GCP project ID",
        )
        gcp_region = gr.Dropdown(
            ["us-central1", "asia鈥慹ast1", "asia-northeast1"],
            value="us-central1",
            interactive=True,
            label="GCP Region"
        )

    gr.Markdown(
    """
    Configurations on scalability
    """)        
    with gr.Row():
        min_nodes = gr.Slider(
            label="minimum number of nodes",
            minimum=1,
            maximum=10)
        
        max_nodes = gr.Slider(
            label="maximum number of nodes",
            minimum=1,
            maximum=10)
    
    btn = gr.Button(value="Ready to Deploy!")
    # btn.click(mirror, inputs=[im], outputs=[im_2])    

def update_regions(provider):
    avalialbe_regions = []
    
    headers = {
        "Content-Type": "application/json",
    }
    endpoint_url = f"https://api.endpoints.huggingface.cloud/provider/{provider}/region"
    response = requests.get(endpoint_url, headers=headers)

    for region in response.json()['items']:
        if region['status'] == 'available':
            avalialbe_regions.append(f"{region['region']}/{region['label']}")

    return gr.Dropdown.update(
        choices=avalialbe_regions,
        value=avalialbe_regions[0] if len(avalialbe_regions) > 0 else None
    )

def update_compute_options(provider, region):
    region = region.split("/")[0]
    avalialbe_compute_options = []

    headers = {
        "Content-Type": "application/json",
    }
    endpoint_url = f"https://api.endpoints.huggingface.cloud/provider/{provider}/region/{region}/compute"
    print(endpoint_url)
    response = requests.get(endpoint_url, headers=headers)

    for compute in response.json()['items']:
        if compute['status'] == 'available':
            accelerator = compute['accelerator']
            numAccelerators = compute['numAccelerators']
            memoryGb = compute['memoryGb'].replace("Gi", "GB")
            architecture = compute['architecture']
            instanceType = compute['instanceType']
            
            type = f"{numAccelerators}vCPU {memoryGb}{architecture}" if accelerator == "cpu" else f"{numAccelerators}x {architecture}"
            
            avalialbe_compute_options.append(
                f"{compute['accelerator'].upper()} [{compute['instanceSize']}] 路 {type}{instanceType}"
            )

    return gr.Dropdown.update(
        choices=avalialbe_compute_options,
        value=avalialbe_compute_options[0] if len(avalialbe_compute_options) > 0 else None
    )

def submit(
    hf_token_input,
    endpoint_name_input,
    provider_selector,
    region_selector,
    repository_selector,
    task_selector,
    framework_selector,
    compute_selector,
    min_node_selector, 
    max_node_selector, 
    security_selector    
):
    compute_resources = compute_selector.split("路")
    accelerator = compute_resources[0][:3].strip()

    size_l_index = compute_resources[0].index("[") - 1
    size_r_index = compute_resources[0].index("]")
    size = compute_resources[0][size_l_index : size_r_index].strip()

    type = compute_resources[-1].strip()
    
    payload = {
      "accountId": repository_selector.split("/")[0],
      "compute": {
        "accelerator": accelerator.lower(),
        "instanceSize": size[1:],
        "instanceType": type,
        "scaling": {
          "maxReplica": int(max_node_selector),
          "minReplica": int(min_node_selector)
        }
      },
      "model": {
        "framework": "custom",
        "image": {
          "huggingface": {}
        },
        "repository": repository_selector.lower(),
        "revision": head_sha,
        "task": task_selector.lower()
      },
      "name": endpoint_name_input.strip(),
      "provider": {
        "region": region_selector.split("/")[0].lower(),
        "vendor": provider_selector.lower()
      },
      "type": security_selector.lower()
    }
    
    print(payload)

    payload = json.dumps(payload)
    print(payload)

    headers = {
        "Authorization": f"Bearer {hf_token_input.strip()}",
        "Content-Type": "application/json",
    }
    endpoint_url = f"https://api.endpoints.huggingface.cloud/endpoint"
    print(endpoint_url)

    response = requests.post(endpoint_url, headers=headers, data=payload)

    if response.status_code == 400:
        return f"{response.text}. Malformed data in {payload}"
    elif response.status_code == 401:
        return "Invalid token"
    elif response.status_code == 409:
        return f"Endpoint {endpoint_name_input} already exists"
    elif response.status_code == 202:
        return f"Endpoint {endpoint_name_input} created successfully on {provider_selector.lower()} using {repository_selector.lower()}@{head_sha}. \n Please check out the progress at https://ui.endpoints.huggingface.co/endpoints."
    else:
        return f"something went wrong {response.status_code} = {response.text}"

with gr.Blocks() as demo2:
    gr.Markdown(
    """
    ## Deploy Stable Diffusion on 馃 Endpoint
    ---
    """)
    
    gr.Markdown("""
    
    #### Your 馃 Access Token
    """)
    hf_token_input = gr.Textbox(
        show_label=False,
        type="password"
    )

    gr.Markdown("""    
    #### Decide the Endpoint name
    """)
    endpoint_name_input = gr.Textbox(
        show_label=False
    )    
        
    providers = avaliable_providers()

    with gr.Row():
        gr.Markdown("""    
        #### Cloud Provider
        """)

        gr.Markdown("""    
        #### Cloud Region
        """)       
    
    with gr.Row():
        provider_selector = gr.Dropdown(
            choices=providers,
            interactive=True,
            show_label=False,
        )
        
        region_selector = gr.Dropdown(
            [],
            value="",
            interactive=True,
            show_label=False,
        )
        
        provider_selector.change(update_regions, inputs=provider_selector, outputs=region_selector)

    with gr.Row():
        gr.Markdown("""    
        #### Target Model
        """)

        gr.Markdown("""    
        #### Target Model Version(branch)
        """)       
    
    with gr.Row():
        repository_selector = gr.Textbox(
            value="chansung/my-kitty",
            interactive=False,
            show_label=False,
        )

        revision_selector = gr.Textbox(
            value=f"v1673365013/{head_sha[:7]}",
            interactive=False,
            show_label=False,
        )        

    with gr.Row():
        gr.Markdown("""    
        #### Task
        """)

        gr.Markdown("""    
        #### Framework
        """)      
    
    with gr.Row():
        task_selector = gr.Textbox(
            value="Custom",
            interactive=False,
            show_label=False,
        )

        framework_selector = gr.Textbox(
            value="TensorFlow",
            interactive=False,
            show_label=False,
        )

    gr.Markdown("""
    
    #### Select Compute Instance Type
    """)    
    compute_selector = gr.Dropdown(
        [],
        value="",
        interactive=True,
        show_label=False,
    )
    region_selector.change(update_compute_options, inputs=[provider_selector, region_selector], outputs=compute_selector)

    with gr.Row():
        gr.Markdown("""    
        #### Min Number of Nodes
        """)

        gr.Markdown("""    
        #### Max Number of Nodes
        """)

        gr.Markdown("""    
        #### Security Level
        """)        
    
    with gr.Row():
        min_node_selector = gr.Number(
            value=1,
            interactive=True,
            show_label=False,
        )

        max_node_selector = gr.Number(
            value=1,
            interactive=True,
            show_label=False,
        )

        security_selector = gr.Radio(
            choices=["Protected", "Public", "Private"],
            value="Public",
            interactive=True,
            show_label=False,
        )
    
    submit_button = gr.Button(
        value="Submit",
    )

    status_txt = gr.Textbox(
        value="any status update will be displayed here",
        interactive=False
    )

    submit_button.click(
        submit, 
        inputs=[
            hf_token_input,
            endpoint_name_input,
            provider_selector,
            region_selector,
            repository_selector,
            task_selector,
            framework_selector,
            compute_selector,
            min_node_selector, 
            max_node_selector, 
            security_selector],
        outputs=status_txt)    

    gr.Markdown("""    
    #### Pricing Table(CPU) - 2023/1/11
    """)

    gr.Dataframe(
        headers=["provider", "size", "$/h", "vCPUs", "Memory", "Architecture"],
        datatype=["str", "str", "str", "number", "str", "str"],
        row_count=8,
        col_count=(6, "fixed"),
        value=[
            ["aws", "small", "$0.06", 1, "2GB", "Intel Xeon - Ice Lake"],
            ["aws", "medium", "$0.12", 2, "4GB", "Intel Xeon - Ice Lake"],
            ["aws", "large", "$0.24", 4, "8GB", "Intel Xeon - Ice Lake"],
            ["aws", "xlarge", "$0.48", 8, "16GB", "Intel Xeon - Ice Lake"],
            ["azure", "small", "$0.06", 1, "2GB", "Intel Xeon"],
            ["azure", "medium", "$0.12", 2, "4GB", "Intel Xeon"],
            ["azure", "large", "$0.24", 4, "8GB", "Intel Xeon"],
            ["azure", "xlarge", "$0.48", 8, "16GB", "Intel Xeon"],
        ]
    )

    gr.Markdown("""    
    #### Pricing Table(GPU) - 2023/1/11
    """)    

    gr.Dataframe(
        headers=["provider", "size", "$/h", "GPUs", "Memory", "Architecture"],
        datatype=["str", "str", "str", "number", "str", "str"],
        row_count=6,
        col_count=(6, "fixed"),
        value=[
            ["aws", "small", "$0.60", 1, "14GB", "NVIDIA T4"],
            ["aws", "medium", "$1.30", 1, "24GB", "NVIDIA A10G"],
            ["aws", "large", "$4.50", 4, "156B", "NVIDIA T4"],
            ["aws", "xlarge", "$6.50", 1, "80GB", "NVIDIA A100"],
            ["aws", "xxlarge", "$7.00", 4, "96GB", "NVIDIA A10G"],
            ["aws", "xxxlarge", "$45.0", 8, "640GB", "NVIDIA A100"],
        ]
    )    

gr.TabbedInterface(
    [demo2], ["Deploy on 馃 Endpoint"]
).launch(enable_queue=True)