Spaces:
Runtime error
Runtime error
| """ | |
| Adapted from https://huggingface.co/spaces/stabilityai/stable-diffusion | |
| """ | |
| from tensorflow import keras | |
| import time | |
| import gradio as gr | |
| import keras_cv | |
| from constants import css, examples, img_height, img_width, num_images_to_gen | |
| from share_btn import community_icon_html, loading_icon_html, share_js | |
| from huggingface_hub import from_pretrained_keras | |
| import requests | |
| # MODEL_CKPT = "chansung/textual-inversion-pipeline@v1673026791" | |
| # MODEL = from_pretrained_keras(MODEL_CKPT) | |
| # model = keras_cv.models.StableDiffusion( | |
| # img_width=img_width, img_height=img_height, jit_compile=True | |
| # ) | |
| # model._text_encoder = MODEL | |
| # model._text_encoder.compile(jit_compile=True) | |
| # # Warm-up the model. | |
| # _ = model.text_to_image("Teddy bear", batch_size=num_images_to_gen) | |
| def generate_image_fn(prompt: str, unconditional_guidance_scale: int) -> list: | |
| start_time = time.time() | |
| # `images is an `np.ndarray`. So we convert it to a list of ndarrays. | |
| # Each ndarray represents a generated image. | |
| # Reference: https://gradio.app/docs/#gallery | |
| images = model.text_to_image( | |
| prompt, | |
| batch_size=num_images_to_gen, | |
| unconditional_guidance_scale=unconditional_guidance_scale, | |
| ) | |
| end_time = time.time() | |
| print(f"Time taken: {end_time - start_time} seconds.") | |
| return [image for image in images] | |
| demoInterface = gr.Interface( | |
| generate_image_fn, | |
| inputs=[ | |
| gr.Textbox( | |
| label="Enter your prompt", | |
| max_lines=1, | |
| # placeholder="cute Sundar Pichai creature", | |
| ), | |
| gr.Slider(value=40, minimum=8, maximum=50, step=1), | |
| ], | |
| outputs=gr.Gallery().style(grid=[2], height="auto"), | |
| # examples=[["cute Sundar Pichai creature", 8], ["Hello kitty", 8]], | |
| allow_flagging=False, | |
| ) | |
| def welcome(name): | |
| return f"Welcome to Gradio, {name}!" | |
| def avaliable_providers(): | |
| providers = [] | |
| headers = { | |
| "Content-Type": "application/json", | |
| } | |
| endpoint_url = "https://api.endpoints.huggingface.cloud/provider" | |
| response = requests.get(endpoint_url, headers=headers) | |
| for provider in response.json()['items']: | |
| if provider['status'] != 'avaliable': | |
| providers.append(provider['vendor']) | |
| return providers | |
| with gr.Blocks() as demo: | |
| gr.Markdown( | |
| """ | |
| # Your own Stable Diffusion on Google Cloud Platform | |
| """) | |
| with gr.Row(): | |
| gcp_project_id = gr.Textbox( | |
| label="GCP project ID", | |
| ) | |
| gcp_region = gr.Dropdown( | |
| ["us-central1", "asia‑east1", "asia-northeast1"], | |
| value="us-central1", | |
| interactive=True, | |
| label="GCP Region" | |
| ) | |
| gr.Markdown( | |
| """ | |
| Configurations on scalability | |
| """) | |
| with gr.Row(): | |
| min_nodes = gr.Slider( | |
| label="minimum number of nodes", | |
| minimum=1, | |
| maximum=10) | |
| max_nodes = gr.Slider( | |
| label="maximum number of nodes", | |
| minimum=1, | |
| maximum=10) | |
| btn = gr.Button(value="Ready to Deploy!") | |
| # btn.click(mirror, inputs=[im], outputs=[im_2]) | |
| selected_provider = None | |
| provider_selector = None | |
| avalialbe_regions = None | |
| avalialbe_regions = [] | |
| def avaliable_regions(provider): | |
| avalialbe_regions = [] | |
| headers = { | |
| "Content-Type": "application/json", | |
| } | |
| endpoint_url = "https://api.endpoints.huggingface.cloud/region" | |
| response = requests.get(endpoint_url, headers=headers) | |
| for region in response.json()['items']: | |
| if region['status'] != 'avaliable': | |
| avalialbe_regions.append(region['vendor']) | |
| return avalialbe_regions | |
| with gr.Blocks() as demo2: | |
| gr.Markdown( | |
| """ | |
| # Your own Stable Diffusion on Hugging Face 🤗 Endpoint | |
| """) | |
| providers = avaliable_providers() | |
| with gr.Row(): | |
| provider_selector = gr.Dropdown( | |
| label="select cloud provider", | |
| interactive=True, | |
| choices=providers | |
| ) | |
| region_selector = gr.Dropdown( | |
| avalialbe_regions, | |
| value="us-central1", | |
| interactive=True, | |
| label="reegions" | |
| ) | |
| region_selector.update(interactive=True) | |
| provider_selector.change(avaliable_regions, outputs=region_selector) | |
| gr.TabbedInterface( | |
| [demoInterface, demo, demo2], ["Try-out", "🚀 Deploy on GCP", " Deploy on 🤗 Endpoint"] | |
| ).launch(enable_queue=True) |